About Me

Anand's picture

I am a Research Assistant and a PhD Candidate with Prof. Wolfgang Maass at the Institute for Theoretical Computer Science at Technische Universität Graz My primary research interest is to understand intelligence using methods at the intersection of machine learning and computational neuroscience. I do this by developing mathematical and computational models for learning and memory with a strong emphasis on biologically plausibility, taking inspiration from state-of-the-art machine learning methods.

I used to be a Software Development Engineer at Amazon.com in the DynamoDB team for a couple of years before I started my PhD.

Before that, I did my Masters in computer science at the University of Texas at Austin. I worked with Prof. Risto Miikkulainen on using neuro-evolution and task-decomposition to learn complex tasks. I have also worked with Prof. Peter Stone on agents that learn from human demonstrations and rewards.

Before doing my Masters, I worked at Indian Institute of Science, Bangalore as a Research Assistant with Prof. K Gopinath. I was an undergraduate at IIT Madras before that.

Detailed resume available on request.

Link to my Google Scholar Profile

I am actively looking for postdoc (or research scientist) positions in academia or industry. Contact me at anand@igi.tugraz.at or on LinkedIn.


  1. Salaj* D, Subramoney* A, Kraišniković* C, Bellec G, Legenstein R, Maass W. "Spike-frequency adaptation provides a long short-term memory to networks of spiking neurons". bioRxiv. May 2020; (url) (bibtex)
  2. Bellec* G, Scherr* F, Subramoney A, Hajek E, Salaj D, Legenstein R, Maass W. "A solution to the learning dilemma for recurrent networks of spiking neurons". bioRxiv. April 2020; (url) (bibtex)
  3. Subramoney* A, Scherr* F, Bellec* G, Hajek E, Salaj D, Legenstein R, Maass W. "Slow processes of neurons enable a biologically plausible approximation to policy gradient". In: NeurIPS 2019 Workshop: Biological and artificial Reinforcement Learning. 2019. (url) (pdf) (bibtex)
  4. Bellec* G, Scherr* F, Hajek E, Salaj D, Subramoney A, Legenstein R, Maass W. "Eligibility traces provide a data-inspired alternative to backpropagation through time". In: NeurIPS 2019 Workshop: Real neurons and hidden units. 2019. (url) (bibtex)
  5. Subramoney A, Scherr F, Maass W. "Reservoirs learn to learn". arXiv preprint arXiv:190907486. September 2019; (url) (bibtex)
  6. Subramoney A, Scherr F, Maass W. "Learning to learn motor prediction by networks of spiking neurons". In: Worshop on Robust Artificial Intelligence For Neurorobotics, Edinburgh. 2019. (url) (bibtex)
  7. Yegenoglu* A, Diaz* S, Klijn* W, Peyser* A, Subramoney A, Maas W, Visconti G, Herty M. "Learning to Learn on High Performance Computing". In: Society for Neuroscience Meeting 2019. Jülich Supercomputing Center; 2019. (url) (bibtex)
  8. Kaiser* J, Hoff* M, Konle A, Vasquez Tieck JC, Kappel D, Reichard D, Subramoney A, Legenstein R, Roennau A, Maass W, others. "Embodied Synaptic Plasticity With Online Reinforcement Learning". Frontiers in Neurorobotics. 2019;13:81. (url) (bibtex)
  9. Bellec* G, Salaj* D, Subramoney* A, Legenstein R, Maass W. "Long short-term memory and Learning-to-learn in networks of spiking neurons". In: Advances in Neural Information Processing Systems 31. Curran Associates, Inc.; 2018. p. 795–805. (url) (pdf) (bibtex)
  10. Kaiser J, Stal R, Subramoney A, Roennau A, Dillmann R. "Scaling up liquid state machines to predict over address events from dynamic vision sensors". Bioinspiration & Biomimetics. June 2017; (url) (pdf) (bibtex)
  11. Petrovici MA, Schmitt S, Klähn J, Stöckel D, Schroeder A, Bellec G, Bill J, Breitwieser O, Bytschok I, Grübl A, Güttler M, Hartel A, Hartmann S, Husmann D, Husmann K, Jeltsch S, Karasenko V, Kleider M, Koke C, Kononov A, Mauch C, Müller E, Müller P, Partzsch J, Pfeil T, Schiefer S, Scholze S, Subramoney A, Thanasoulis V, Vogginger B, Legenstein R, Maass W, Schüffny R, Mayr C, Schemmel J, Meier K. "Pattern representation and recognition with accelerated analog neuromorphic systems". In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS). 2017. p. 1–4. (url) (pdf) (bibtex)
  12. Subramoney A. "Evaluating Modular Neuroevolution in Robotic Keepaway Soccer" [Master's thesis]. [Austin, TX]: Department of Computer Science, The University of Texas at Austin; 2012. p. 54 pages. (url) (pdf) (bibtex)
  13. Jain A, Subramoney A, Miikkulainen R. "Task decomposition with neuroevolution in extended predator-prey domain". In: Proceedings of Thirteenth International Conference on the Synthesis and Simulation of Living Systems. East Lansing, MI, USA; 2012. (url) (pdf) (bibtex)

(*: equal contributions)

Open Source Software


Summer semester 2019

Summer semester 2018

Summer semester 2017

Winter semester 2016/17

Summer semester 2016

Winter semester 2015/16

Summer semester 2015