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Abstract

Recurrent networks of spiking neurons (RSNNs) underlie the astounding comput-
ing and learning capabilities of the brain. But computing and learning capabilities
of RSNN models have remained poor, at least in comparison with artificial neural
networks (ANNs). We address two possible reasons for that. One is that RSNNs
in the brain are not randomly connected or designed according to simple rules,
and they do not start learning as a tabula rasa network. Rather, RSNNs in the
brain were optimized for their tasks through evolution, development, and prior
experience. Details of these optimization processes are largely unknown. But
their functional contribution can be approximated through powerful optimization
methods, such as backpropagation through time (BPTT).
A second major mismatch between RSNNs in the brain and models is that the
latter only show a small fraction of the dynamics of neurons and synapses in
the brain. We include neurons in our RSNN model that reproduce one promi-
nent dynamical process of biological neurons that takes place at the behaviourally
relevant time scale of seconds: neuronal adaptation. We denote these networks
as LSNNs because of their Long short-term memory. The inclusion of adapting
neurons drastically increases the computing and learning capability of RSNNs if
they are trained and configured by deep learning (BPTT combined with a rewiring
algorithm that optimizes the network architecture). In fact, the computational per-
formance of these RSNNs approaches for the first time that of LSTM networks.
In addition RSNNs with adapting neurons can acquire abstract knowledge from
prior learning in a Learning-to-Learn (L2L) scheme, and transfer that knowledge
in order to learn new but related tasks from very few examples. We demonstrate
this for supervised learning and reinforcement learning.

1 Introduction

Recurrent networks of spiking neurons (RSNNs) are frequently studied as models for networks of
neurons in the brain. In principle, they should be especially well-suited for computations in the
temporal domain, such as speech processing, as their computations are carried out via spikes, i.e.,
events in time and space. But the performance of RSNN models has remained suboptimal also for
temporal processing tasks. One difference between RSNNs in the brain and RSNN models is that
RSNNs in the brain have been optimized for their function through long evolutionary processes,
complemented by a sophisticated learning curriculum during development. Since most details of
these biological processes are currently still unknown, we asked whether deep learning is able to
mimic these complex optimization processes on a functional level for RSNN models. We used
BPTT as the deep learning method for network optimization. Backpropagation has been adapted
previously for feed forward networks with binary activations in [1, 2], and we adapted BPTT to work
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in a similar manner for RSNNs. In order to also optimize the connectivity of RSNNs, we augmented
BPTT with DEEP R, a biologically inspired heuristic for synaptic rewiring [3, 4]. Compared to
LSTM networks, RSNNs tend to have inferior short-term memory capabilities. Since neurons in the
brain are equipped with a host of dynamics processes on time scales larger than a few dozen ms [5],
we enriched the inherent dynamics of neurons in our model by a standard neural adaptation process.

We first show (section 4) that this approach produces new computational performance levels of
RSNNs for two common benchmark tasks: Sequential MNIST and TIMIT (a speech processing
task). We then show that it makes L2L applicable to RSNNs (section 5), similarly as for LSTM
networks. In particular, we show that meta-RL [6, 7] produces new motor control capabilities of
RSNNs (section 6). This result links a recent abstract model for reward-based learning in the brain
[8] to spiking activity. In addition, we show that RSNNs with sparse connectivity and sparse firing
activity of 10-20 Hz (see Fig. 1D, 2D, S1C) can solve these and other tasks. Hence these RSNNs
compute with spikes, rather than firing rates.

The superior computing and learning capabilities of LSNNs suggest that they are also of interest for
implementation in spike-based neuromorphic chips such as Brainscales [9], SpiNNaker [10], True
North [2], chips from ETH Zürich [11], and Loihi [12]. In particular, nonlocal learning rules such
as backprop are challenges for some of these neuromorphic devices (and for many brain models).
Hence alternative methods for RSNN learning of nonlinear functions are needed. We show in sec-
tions 5 and 6 that L2L can be used to generate RSNNs that learn very efficiently even in the absence
of synaptic plasticity.

Relation to prior work: We refer to [13, 14, 15, 16] for summaries of preceding results on compu-
tational capabilities of RSNNs. The focus there was typically on the generation of dynamic patterns.
Such tasks are not addressed in this article, but it will be shown in [17] that LSNNs provide an al-
ternative model to [16] for the generation of complex temporal patterns. Huh et al. [15] applied
gradient descent to recurrent networks of spiking neurons. There, neurons without a leak were used.
Hence, the voltage of a neuron could used in that approach to store information over an unlimited
length of time.

We are not aware of previous attempts to bring the performance of RSNNs for time series classifica-
tion into the performance range of LSTM networks. We are also not aware of any previous literature
on applications of L2L to SNNs.

2 LSNN model

Neurons and synapses in common RSNN models are missing many of the dynamic processes found
in their biological counterparts, especially those on larger time scales. We integrate one of them
into our RSNN model: neuronal adaptation. It is well known that a substantial fraction of excita-
tory neurons in the brain are adapting, with diverse time constants, see e.g. the Allen Brain Atlas
for data from the neocortex of mouse and humans. We refer to the resulting type of RSNNs as
Long short-term memory Spiking Neural Networks (LSNNs). LSNNs consist of a population R
of integrate-and-fire (LIF) neurons (excitatory and inhibitory), and a second population A of LIF
excitatory neurons whose excitability is temporarily reduced through preceding firing activity, i.e.,
these neurons are adapting (see Fig. 1C and Suppl.). Both populations R and A receive spike trains
from a populationX of external input neurons. Results of computations are read out by a population
Y of external linear readout neurons, see Fig. 1C.

Common ways for fitting models for adapting neurons to data are described in [18, 19, 20, 21]. We
are using here the arguably simplest model: We assume that the firing threshold Bj(t) of neuron j
increases by some fixed amount β/τa,j for each spike of this neuron j, and then decays exponentially
back to a baseline value b0j with a time constant τa,j . Thus the threshold dynamics for a discrete
time step of δt = 1 ms reads as follows

Bj(t) = b0j + βbj(t), (1)

bj(t+ δt) = ρjbj(t) + (1− ρj)zj(t), (2)

where ρj = exp(− δt
τa,j

) and zj(t) is the spike train of neuron j assuming values in {0, 1
δt}. Note

that this dynamics of thresholds of adaptive spiking neurons is similar to the dynamics of the state
of context neurons in [22]. It generally suffices to place the time constant of adapting neurons into
the desired range for short-term memory (see Suppl. for specific values used in each experiment).
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3 Applying BPTT with DEEP R to RSNNs and LSNNs

We optimize the synaptic weights, and in some cases also the connectivity matrix of an LSNN for
specific ranges of tasks. The optimization algorithm that we use, backpropagation through time
(BPTT), is not claimed to be biologically realistic. But like evolutionary and developmental pro-
cesses, BPTT can optimize LSNNs for specific task ranges. Backpropagation (BP) had already been
applied in [1] and [2] to feedforward networks of spiking neurons. In these approaches, the gradient
is backpropagated through spikes by replacing the non-existent derivative of the membrane potential
at the time of a spike by a pseudo-derivative that smoothly increases from 0 to 1, and then decays
back to 0. We reduced (“dampened”) the amplitude of the pseudo-derivative by a factor < 1 (see
Suppl. for details). This enhances the performance of BPTT for RSNNs that compute during larger
time spans, that require backpropagation through several 1000 layers of an unrolled feedforward
network of spiking neurons. A similar implementation of BPTT for RSNNs was proposed in [15]. It
is not yet clear which of these two versions of BPTT work best for a given task and a given network.

In order to optimize not only the synaptic weights of a RSNN but also its connectivity matrix, we
integrated BPTT with the biologically inspired [3] rewiring method DEEP R [4] (see Suppl. for
details). DEEP R converges theoretically to an optimal network configuration by continuously up-
dating the set of active connections [23, 3, 4].

4 Computational performance of LSNNs

Sequential MNIST: We tested the performance of LSNNs on a standard benchmark task that re-
quires continuous updates of short term memory over a long time span: sequential MNIST [24, 25].
We compare the performance of LSNNs with that of LSTM networks. The size of the LSNN, in the
case of full connectivity, was chosen to match the number of parameters of the LSTM network. This
led to 120 regular spiking and 100 adaptive neurons (with adaptation time constant τa of 700 ms) in
comparison to 128 LSTM units. Actually it turned out that the sparsely connected LSNN shown in
Fig. 1C, which was generated by including DEEP R in BPTT, had only 12% of the synaptic connec-
tions but performed better than the fully connected LSNN (see “DEEP R LSNN” versus “LSNN” in
Fig. 1B).

The task is to classify the handwritten digits of the MNIST dataset when the pixels of each hand-
written digit are presented sequentially, one after the other in 784 steps, see Fig. 1A. After each
presentation of a handwritten digit, the network is required to output the corresponding class. The
grey values of pixels were given directly to artificial neural networks (ANNs), and encoded by spikes
for RSNNs. We considered both the case of step size 1 ms (requiring 784 ms for presenting the in-
put image) and 2 ms (requiring 1568 ms for each image, the adaptation time constant τa was set to
1400 ms in this case, see Fig. 1B.). The top row of Fig. 1D shows a version where the grey value of
the currently presented pixel is encoded by population coding through the firing probability of the
80 input neurons. Somewhat better performance was achieved when each of the 80 input neurons
is associated with a particular threshold for the grey value, and this input neuron fires whenever the
grey value crosses its threshold in the transition from the previous to the current pixel (this input
convention is chosen for the SNN results of Fig. 1B). In either case, an additional input neuron be-
comes active when the presentation of the 784 pixel values is finished, in order to prompt an output
from the network. The firing of this additional input neuron is shown at the top right of the top panel
of Fig. 1D. The softmax of 10 linear output neurons Y is trained through BPTT to produce, during
this time segment, the label of the sequentially presented handwritten digit. We refer to the yellow
shading around 800 ms of the output neuron for label 3 in the plot of the dynamics of the output
neurons Y in Fig. 1D. This output was correct.

A performance comparison is given in Fig. 1B. LSNNs achieve 94.7% and 96.4% classification
accuracy on the test set when every pixel is presented for 1 and 2ms respectively. An LSTM network
achieves 98.5% and 98.0% accuracy on the same task setups. The LIF and RNN bars in Fig. 1B show
that this accuracy is out of reach for BPTT applied to spiking or nonspiking neural networks without
enhanced short term memory capabilities. We observe that in the sparse architecture discovered by
DEEP R, the connectivity onto the readout neurons Y is denser than in the rest of the network (see
Fig. 1C). Detailed results are given in the supplement.
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Figure 1: Sequential MNIST. A The task is to classify images of handwritten digits when the
pixels are shown sequentially pixel by pixel, in a fixed order row by row. B The performance
of RSNNs is tested for three different setups: without adapting neurons (LIF), a fully connected
LSNN, and an LSNN with randomly initialized connectivity that was rewired during training (DEEP
R LSNN). For comparison, the performance of two ANNs, a fully connected RNN and an LSTM
network are also shown. C Connectivity (in terms of connection probabilities between and within
the 3 subpopulations) of the LSNN after applying DEEP R in conjunction with BPTT. The input
population X consisted of 60 excitatory and 20 inhibitory neurons. Percentages on the arrows from
X indicate the average connection probabilities from excitatory and inhibitory neurons. D Dynamics
of the LSNN after training when the input image from A was sequentially presented. From top to
bottom: spike rasters from input neurons (X), and random subsets of excitatory (E) and inhibitory (I)
regularly spiking neurons, and adaptive neurons (A), dynamics of the firing thresholds of a random
sample of adaptive neurons; activation of softmax readout neurons.

Speech recognition (TIMIT): We also tested the performance of LSNNs for a real-world speech
recognition task, the TIMIT dataset. A thorough study of the performance of many variations of
LSTM networks on TIMIT has recently been carried out in [26]. We used exactly the same setup
which was used there (framewise classification) in order to facilitate comparison. We found that
a standard LSNN consisting of 300 regularly firing (200 excitatory and 100 inhibitory) and 100
excitatory adapting neurons with an adaptation time constant of 200 ms, and with 20% connection
probability in the network, achieved a classification error of 33.2%. This error is below the mean
error around 40% from 200 trials with different hyperparameters for the best performing (and most
complex) version of LSTMs according to Fig. 3 of [26], but above the mean of 29.7% of the 20
best performing choices of hyperparameters for these LSTMs. The performance of the LSNN was
however somewhat better than the error rates achieved in [26] for a less complex version of LSTMs
without forget gates (mean of the best 20 trials: 34.2%).

We could not perform a similarly rigorous search over LSNN architectures and meta-parameters
as was carried out in [26] for LSTMs. But if all adapting neurons are replaced by regularly firing
excitatory neurons one gets a substantially higher error rate than the LSNN with adapting neurons:
37%. Details are given in the supplement.
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5 LSNNs learn-to-learn from a teacher

One likely reason why learning capabilities of RSNN models have remained rather poor is that one
usually requires a tabula rasa RSNN model to learn. In contrast, RSNNs in the brain have been
optimized through a host of preceding processes, from evolution to prior learning of related tasks,
for their learning performance. We emulate a similar training paradigm for RSNNs using the L2L
setup. We explore here only the application of L2L to LSNNs, but L2L can also be applied to
RSNNs without adapting neurons [27]. An application of L2L to LSNNs is tempting, since L2L
is most commonly applied in machine learning to their ANN counterparts: LSTM networks see
e.g. [6, 7]. LSTM networks are especially suited for L2L since they can accommodate two levels
of learning and representation of learned insight: Synaptic connections and weights can encode,
on a higher level, a learning algorithm and prior knowledge on a large time-scale. The short-term
memory of an LSTM network can accumulate, on a lower level of learning, knowledge during the
current learning task. It has recently been argued [8] that the pre-frontal cortex (PFC) similarly
accumulates knowledge during fast reward-based learning in its short-term memory, without using
dopamine-gated synaptic plasticity, see the text to Suppl. Fig. 3 in [8]. The experimental results of
[28] suggest also a prominent role of short-term memory for fast learning in the motor cortex.

The standard setup of L2L involves a large, in fact in general infinitely large, family F of learning
tasks C. Learning is carried out simultaneously in two loops (see Fig. 2A). The inner loop learning
involves the learning of a single task C by a neural network N , in our case by an LSNN. Some
parameters of N (termed hyper-parameters) are optimized in an outer loop optimization to support
fast learning of a randomly drawn task C from F . The outer loop training – implemented here
through BPTT – proceeds on a much larger time scale than the inner loop, integrating performance
evaluations from many different tasks C of the family F . One can interpret this outer loop as
a process that mimics the impact of evolutionary and developmental optimization processes, as
well as prior learning, on the learning capability of brain networks. We use the terms training and
optimization interchangeably, but the term training is less descriptive of the longer-term evolutionary
processes we mimic. Like in [29, 6, 7] we let all synaptic weights of N belong to the set of hyper-
parameters that are optimized through the outer loop. Hence the network is forced to encode all
results from learning the current task C in its internal state, in particular in its firing activity and
the thresholds of adapting neurons. Thus the synaptic weights of the neural network N are free to
encode an efficient algorithm for learning arbitrary tasks C from F .

When the brain learns to predict sensory inputs, or state changes that result from an action, this
can be formalized as learning from a teacher (i.e., supervised learning). The teacher is in this case
the environment, which provides – often with some delay – the target output of a network. The
L2L results of [29] show that LSTM networks can learn nonlinear functions from a teacher without
modifying their synaptic weights, using their short-term memory instead. We asked whether this
form of learning can also be attained by LSNNs.

Task: We considered the task of learning complex non-linear functions from a teacher. Specifically,
we chose as family F of tasks a class of continuous functions of two real-valued variables (x1, x2).
This class was defined as the family of all functions that can be computed by a 2-layer artificial
neural network of sigmoidal neurons with 10 neurons in the hidden layer, and weights and biases
from [-1, 1], see Fig. 2B. Thus overall, each such target network (TN) from F was defined through
40 parameters in the range [-1, 1]: 30 weights and 10 biases. We gave the teacher input to the LSNN
for learning a particular TN C from F in a delayed manner as in [29]: The target output value was
given after N had provided its guessed output value for the preceding input.

This delay of the feedback is consistent with biologically plausible scenarios. Simultaneously, hav-
ing a delay for the feedback prevents N from passing on the teacher value as output without first
producing a prediction on its own.

Implementation: We considered a LSNNN consisting of 180 regularly firing neurons (population
R) and 120 adapting neurons (population A) with a spread of adaptation time constants sampled
uniformly between 1 and 1000 ms and with full connectivity. Sparse connectivity in conjunction
with rewiring did not improve performance in this case. All neurons in the LSNN received input
from a populationX of 300 external input neurons. A linear readout received inputs from all neurons
in R and A. The LSNN received a stream of 3 types of external inputs (see top row of Fig. 2D): the
values of x1, x2, and of the output C(x′1, x

′
2) of the TN for the preceding input pair x′1, x

′
2 (set to 0
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at the first trial), all represented through population coding in an external population of 100 spiking
neurons. It produced outputs in the form of weighted spike counts during 20 ms windows from all
neurons in the network (see bottom row of Fig. 2D), where the weights for this linear readout were
trained, like all weights inside the LSNN, in the outer loop, and remained fixed during learning of a
particular TN.

The training procedure in the outer loop of L2L was as follows: Network training was divided into
training episodes. At the start of each training episode, a new target network TN was randomly cho-
sen and used to generate target values C(x1, x2) ∈ [0, 1] for randomly chosen input pairs (x1, x2).
500 of these input pairs and targets were used as training data, and presented one per step to the
LSNN during the episode, where each step lasted 20 ms. LSNN parameters were updated using
BPTT to minimize the mean squared error between the LSNN output and the target in the training
set, using gradients computed over batches of 10 such episodes, which formed one iteration of the
outer loop. In other words, each weight update included gradients calculated on the input/target
pairs from 10 different TNs. This training procedure forced the LSNN to adapt its parameters in a
way that supported learning of many different TNs, rather than specializing on predicting the output
of single TN. After training, the weights of the LSNN remained fixed, and it was required to learn
the input/output behaviour of TNs from F that it had never seen before in an online manner by just
using its short-term memory and dynamics. See the suppl. for further details.

Results: Most of the functions that are computed by TNs from the class F are nonlinear, as il-
lustrated in Fig. 2G for the case of inputs (x1, x2) with x1 = x2. Hence learning the input/output
behaviour of any such TN with biologically realistic local plasticity mechanisms presents a daunting
challenge for a SNN. Fig. 2C shows that after a few thousand training iterations in the outer loop,
the LSNN achieves low MSE for learning new TNs from the family F , significantly surpassing the
performance of an optimal linear approximator (linear regression) that was trained on all 500 pairs
of inputs and target outputs, see orange curve in Fig. 2C,E. In view of the fact that each TN is de-
fined by 40 parameters, it comes at some surprise that the resulting network learning algorithm of
the LSNN for learning the input/output behaviour of a new TN produces in general a good approxi-
mation of the TN after just 5 to 20 trials, where in each trial one randomly drawn labelled example
is presented. One sample of a generic learning process is shown in Fig. 2D. Each sequence of exam-
ples evokes an internal model that is stored in the short-term memory of the LSNN. Fig. 2H shows
the fast evolution of internal models of the LSNN for the TN during the first trials (visualized for
a 1D subset of the 2D input space). We make the current internal model of the LSNN visible by
probing its prediction C(x1, x2) for hypothetical new inputs for evenly spaced points (x1, x2) in the
domain (without allowing it to modify its short-term memory; all other inputs advance the network
state according to the dynamics of the LSNN). One sees that the internal model of the LSNN is from
the beginning a smooth function, of the same type as the ones defined by the TNs in F . Within
a few trials this smooth function approximated the TN quite well. Hence the LSNN had acquired
during the training in the outer loop of L2L a prior for the types of functions that are to be learnt,
that was encoded in its synaptic weights. This prior was in fact quite efficient, since Fig. 2E and F
show that the LSNN was able to learn a TN with substantially fewer trials than a generic learning
algorithm for learning the TN directly in an artificial neural network as in Fig. 2A: BP with a prior
that favored small weights and biases (see end of Sec. 3 in suppl.). These results suggest that L2L
is able to install some form of prior knowledge about the task in the LSNN. We conjectured that the
LSNN fits internal models for smooth functions to the examples it received.

We tested this conjecture in a second, much simpler, L2L scenario. Here the family F consisted of
all sinus functions with arbitrary phase and amplitudes between 0.1 and 5. Fig. 2I shows that the
LSNN also acquired an internal model for sinus functions (made visible analogously as in Fig. 2H)
in this setup from training in the outer loop. Even when we selected examples in an adversarial
manner, which happened to be in a straight line, this did not disturb the prior knowledge of the
LSNN.

Altogether the network learning that was induced through L2L in the LSNNs is of particular interest
from the perspective of the design of learning algorithms, since we are not aware of previously
documented methods for installing structural priors for online learning of a recurrent network of
spiking neurons.
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Figure 2: LSNNs learn to learn from a teacher. A L2L scheme for an SNN N . B Architecture
of the two-layer feed-forward target networks (TNs) used to generate nonlinear functions for the
LSNN to learn; weights and biases were randomly drawn from [-1,1]. C Performance of the LSNN
in learning a new TN during (left) and after (right) training in the outer loop of L2L. Performance is
compared to that of an optimal linear predictor fitted to the batch of all 500 experiments for a TN. D
Network input (top row, only 100 of 300 neurons shown), internal spike-based processing with low
firing rates in the populations R and A (middle rows), and network output (bottom row) for 25 trials
of 20 ms each. E Learning performance of the LSNN for 10 new TNs. Performance for a single TN
is shown as insert, a red cross marks step 7 after which output predictions became very good for this
TN. The spike raster for this learning process is the one depicted in C. Performance is compared to
that of an optimal linear predictor, which, for each example, is fitted to the batch of all preceding
examples. F Learning performance of BP for the same 10 TNs as in D, working directly on the
ANN from A, with a prior for small weights. G Sample input/output curves of TNs on a 1D subset
of the 2D input space, for different weight and bias values. H These curves are all fairly smooth,
like the internal models produced by the LSNN while learning a particular TN. I Illustration of the
prior knowledge acquired by the LSNN through L2L for another family F (sinus functions). Even
adversarially chosen examples (Step 4) do not induce the LSNN to forget its prior.
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Figure 3: Meta-RL results for an LSNN. A, B Performance improvement during training in the
outer loop. C, D Samples of navigation paths produced by the LSNN before and after this training.
Before training, the agent performs a random walk (C). In this example it does not find the goal
within the limited episode duration. After training (D), the LSNN had acquired an efficient explo-
ration strategy that uses two pieces of abstract knowledge: that the goal always lies on the border,
and that the goal position is the same throughout an episode. Note that all synaptic weights of the
LSNNs remained fixed after training.

6 LSNNs learn-to-learn from reward

We now turn to an application of meta reinforcement learning (meta-RL) to LSNNs. In meta-RL,
the LSNN receives rewards instead of teacher inputs. Meta-RL has led to a number of remarkable
results for LSTM networks, see e.g. [6, 7]. In addition, [8] demonstrates that meta-RL provides a
very interesting perspective of reward-based learning in the brain. We focused on one of the more
challenging demos of [6] and [7], where an agent had to learn to find a target in a 2D arena, and to
navigate subsequently to this target from random positions in the arena. This task is related to the
well-known biological learning paradigm of the Morris water maze task [30, 31]. We study here the
capability of an agent to discover two pieces of abstract knowledge from the concrete setup of the
task: the distribution of goal positions, and the fact that the goal position is constant within each
episode. We asked whether the agent would be able to exploit the pieces of abstract knowledge from
learning for many concrete episodes, and use it to navigate more efficiently.

Task: An LSNN-based agent was trained on a family of navigation tasks with continuous state and
action spaces in a circular arena. The task is structured as a sequence of episodes, each lasting 2
seconds. The goal was placed randomly for each episode on the border of the arena. When the agent
reached the goal, it received a reward of 1, and was placed back randomly in the arena. When the
agent hit a wall, it received a negative reward of -0.02 and the velocity vector was truncated to remain
inside the arena. The objective was to maximize the number of goals reached within the episode.
This family F of tasks is defined by the infinite set of possible goal positions. For each episode, an
optimal agent is expected to explore until it finds the goal position, memorize it and exploits this
knowledge until the end of the episode by taking the shortest path to the goal. We trained an LSNN
so that the network could control the agent’s behaviour in all tasks, without changing its network
weights.

Implementation: Since LSNNs with just a few hundred neurons are not able to process visual input,
we provided the current position of the agent within the arena through a place-cell like Gaussian
population rate encoding of the current position. The lack of visual input made it already challenging
to move along a smooth path, or to stay within a safe distance from the wall. The agent received
information about positive and negative rewards in the form of spikes from external neurons. For
training in the outer loop, we used BPTT together with DEEP R applied to the surrogate objective
of the Proximal Policy Optimization (PPO) algorithm [32]. In this task the LSNN had 400 recurrent
units (200 excitatory, 80 inhibitory and 120 adaptive neurons with adaptation time constant τa of
1200 ms), the network was rewired with a fixed connectivity of 20%. The resulting network diagram
and spike raster is shown in Suppl. Fig. 1.

Results: The network behaviour before, during, and after L2L optimization is shown in Fig. 3.
Fig. 3A shows that a large number of training episodes finally provides significant improvements.
With a close look at Fig. 3B, one sees that before 52k training episodes, the intermediate path plan-
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ning strategies did not seem to use the discovered goal position to make subsequent paths shorter.
Hence the agents had not yet discovered that the goal position does not change during an episode.
After training for 300k episodes, one sees from the sample paths in Fig. 3D that both pieces of ab-
stract knowledge had been discovered by the agent. The first path in Fig. 3D shows that the agent
exploits that the goal is located on the border of the maze. The second and last paths show that
the agent knows that the position is fixed throughout an episode. Altogether this demo shows that
meta-RL can be applied to RSNNs, and produces previously not seen capabilities of sparsely fir-
ing RSNNs to extract abstract knowledge from experimentation, and to use it in clever ways for
controlling behaviour.

7 Discussion

We have demonstrated that deep learning provides a useful new tool for the investigation of networks
of spiking neurons: It allows us to create architectures and learning algorithms for RSNNs with
enhanced computing and learning capabilities. In order to demonstrate this, we adapted BPTT
so that it works efficiently for RSNNs, and can be combined with a biologically inspired synaptic
rewiring method (DEEP R). We have shown in section 4 that this method allows us to create sparsely
connected RSNNs that approach the performance of LSTM networks on common benchmark tasks
for the classification of spatio-temporal patterns (sequential MNIST and TIMIT). This qualitative
jump in the computational power of RSNNs was supported by the introduction of adapting neurons
into the model. Adapting neurons introduce a spread of longer time constants into RSNNs, as they
do in the neocortex according to [33]. We refer to the resulting variation of the RSNN model as
LSNNs, because of the resulting longer short-term memory capability. This form of short-term
memory is of particular interest from the perspective of energy efficiency of SNNs, because it stores
and transmits stored information through non-firing of neurons: A neuron that holds information in
its increased firing threshold tends to fire less often.

We have shown in Fig. 2 that an application of deep learning (BPTT and DEEP R) in the outer loop
of L2L provides a new paradigm for learning of nonlinear input/output mappings by a RSNN. This
learning task was thought to require an implementation of BP in the RSNN. We have shown that it
requires no BP, not even changes of synaptic weights. Furthermore we have shown that this new
form of network learning enables RSNNs, after suitable training with similar learning tasks in the
outer loop of L2L, to learn a new task from the same class substantially faster. The reason is that
the prior deep learning has installed abstract knowledge (priors) about common properties of these
learning tasks in the RSNN. To the best of our knowledge, transfer learning capabilities and the use
of prior knowledge (see Fig. 2I) have previously not been demonstrated for SNNs. Fig 3 shows
that L2L also embraces the capability of RSNNs to learn from rewards (meta-RL). For example,
it enables a RSNN – without any additional outer control or clock – to embody an agent that first
searches an arena for a goal, and subsequently exploits the learnt knowledge in order to navigate
fast from random initial positions to this goal. Here, for the sake of simplicity, we considered only
the more common case when all synaptic weights are determined by the outer loop of L2L. But
similar results arise when only some of the synaptic weights are learnt in the outer loop, while other
synapses employ local synaptic plasticity rules to learn the current task [27].

Altogether we expect that the new methods and ideas that we have introduced will advance our un-
derstanding and reverse engineering of RSNNs in the brain. For example, the RSNNs that emerged
in Fig. 1-3 all compute and learn with a brain-like sparse firing activity, quite different from a SNN
that operates with rate-codes. In addition, these RSNNs present new functional uses of short-term
memory that go far beyond remembering a preceding input as in [34], and suggest new forms of
activity-silent memory [35].

Apart from these implications for computational neuroscience, our finding that RSNNs can acquire
powerful computing and learning capabilities with very energy-efficient sparse firing activity pro-
vides new application paradigms for spike-based computing hardware through non-firing.
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