
Bioinspiration & Biomimetics

PAPER

Scaling up liquid state machines to predict over
address events from dynamic vision sensors
To cite this article: Jacques Kaiser et al 2017 Bioinspir. Biomim. 12 055001

 

View the article online for updates and enhancements.

Related content
Learning of embodied interaction
dynamics with recurrent neural networks:
some exploratory experiments
Mohamed Oubbati, Bahram Kord, Petia
Koprinkova-Hristova et al.

-

AnalysisofJET charge exchange spectra
using neuralnetworks
J Svensson, M von Hellermann and R W T
König

-

Artificial retina: the multichannel
processing of the mammalian retina
achieved with a neuromorphic
asynchronous light acquisition device
Henri Lorach, Ryad Benosman, Olivier
Marre et al.

-

Recent citations
Analysis of Liquid Ensembles for
Enhancing the Performance and Accuracy
of Liquid State Machines
Parami Wijesinghe et al

-

Combining Motor Primitives for Perception
Driven Target Reaching With Spiking
Neurons
J. Camilo Vasquez Tieck et al

-

J. Camilo Vasquez Tieck et al-

This content was downloaded from IP address 129.27.159.114 on 16/07/2020 at 14:41

https://doi.org/10.1088/1748-3190/aa7663
http://iopscience.iop.org/article/10.1088/1741-2560/11/2/026019
http://iopscience.iop.org/article/10.1088/1741-2560/11/2/026019
http://iopscience.iop.org/article/10.1088/1741-2560/11/2/026019
http://iopscience.iop.org/article/10.1088/0741-3335/41/2/016
http://iopscience.iop.org/article/10.1088/0741-3335/41/2/016
http://iopscience.iop.org/article/10.1088/1741-2560/9/6/066004
http://iopscience.iop.org/article/10.1088/1741-2560/9/6/066004
http://iopscience.iop.org/article/10.1088/1741-2560/9/6/066004
http://iopscience.iop.org/article/10.1088/1741-2560/9/6/066004
http://dx.doi.org/10.3389/fnins.2019.00504
http://dx.doi.org/10.3389/fnins.2019.00504
http://dx.doi.org/10.3389/fnins.2019.00504
http://dx.doi.org/10.4018/IJCINI.2019010101
http://dx.doi.org/10.4018/IJCINI.2019010101
http://dx.doi.org/10.4018/IJCINI.2019010101
http://dx.doi.org/10.1109/ICCI-CC.2018.8482049
http://dx.doi.org/10.1109/ICCI-CC.2018.8482049
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvlN7SwIR1qx4E3J_R8f5LLD6kz9UOirJXJf4u6ew_q2Jp-2_vZ9OXdCWkwkibXYdbkapGwweb1Y6YRurUGHt3ebjICgxnQY4YzosqvmfF3J3H_40vTrsHIAqT4NMXbSMk_uHXoaOaRnKfDeli7a6_7R0ITa48khhmWzMZUfdDLEKFoCEso2lnXkon-kdqAlToY3c0mrUtzpw8N2rd6KZ8Cr80KKfC7YfU1R7cBYSBmByjvv2vE&sig=Cg0ArKJSzLdXuHYPoLez&adurl=http://iopscience.org/books


© 2017 IOP Publishing Ltd

1. Introduction

The human visual system can make short-term 
predictions over the state of the surrounding 
environment. It is essential when dealing with objects 
moving faster than our own body. One such example 
is a tennis game. The player needs to know in advance 
where and when will the ball arrive so that he/she can be 
in the right place of the court and position his/her racket 
properly. As the ball moves faster than the tennis player, 
the player can not simply follow the current position 
of the ball. Rather, the player needs to anticipate the 
position of the ball in the near future, and position him/
herself with respect to it.

In robotics, predictions are often used to anticipate 
upcoming states of the environment, for more efficient 
planning. It became a crucial step in many problems 
such as state estimation [3], visual servoing [4, 5], 
obstacle avoidance [6, 7] and more recently imitation 
learning [8, 9]. They can also be used to evaluate our 

belief about an environment by comparing a predicted 
state with the actual future state.

Most of the current approaches for prediction in 
robotics work in a synchronous fashion where new 
data is sensed at discrete time intervals. However, recent 
bio-inspired sensors such as the dynamic vision sen-
sor (DVS, or silicon retina [10]) deliver data asynchro-
nously upon local changes in the environment. The 
event-based nature of these sensors has many impor-
tant advantages concerning robotics: low information 
redundancy, reduced processing latency and band-
width, high dynamic range, lightweight data storage 
and power consumption.

Recent model-based methods have been developed 
to perform asynchronous predictions over address 
events [6, 11]. They fit the observed data to a known 
kinematic model, which is then used to predict upcom-
ing observations. These techniques require assump-
tions over the observed motion, such as slowly varying 
velocity or acceleration.

J Kaiser et al

Liquid state machines to predict address events from DVS

055001

BBIICI

© 2017 IOP Publishing Ltd

12

Bioinspir. Biomim.

BB

1748-3190

10.1088/1748-3190/aa7663

5

1

12

Bioinspiration & Biomimetics

IOP

1

September

2017

Scaling up liquid state machines to predict over address events 
from dynamic vision sensors

Jacques Kaiser1,3, Rainer Stal1, Anand Subramoney2, Arne Roennau1 and Rüdiger Dillmann1

1 FZI Research Center for Information Technology, 76131 Karlsruhe, Germany
2 Institute for Theoretical Computer Science, Graz University of Technology, A-8010 Graz, Austria
3 Author to whom any correspondence should be addressed

E-mail: jkaiser@fzi.de, stal@fzi.de, roennau@fzi.de, dillmann@fzi.de and anand.subramoney@tugraz.at

Keywords: liquid state machine, dynamic vision sensor, event-based vision, spiking neural network, motion prediction

Abstract
Short-term visual prediction is important both in biology and robotics. It allows us to anticipate 
upcoming states of the environment and therefore plan more efficiently. In theoretical neuroscience, 
liquid state machines have been proposed as a biologically inspired method to perform asynchronous 
prediction without a model. However, they have so far only been demonstrated in simulation or 
small scale pre-processed camera images. In this paper, we use a liquid state machine to predict 
over the whole  ×128 128  event stream provided by a real dynamic vision sensor (DVS, or silicon 
retina). Thanks to the event-based nature of the DVS, the liquid is constantly fed with data when 
an object is in motion, fully embracing the asynchronicity of spiking neural networks. We propose 
a smooth continuous representation of the event stream for the short-term visual prediction task. 
Moreover, compared to previous works (2002 Neural Comput. 2525 282–93 and Burgsteiner H 
et al 2007 Appl. Intell. 26 99–109), we scale the input dimensionality that the liquid operates on by 
two order of magnitudes. We also expose the current limits of our method by running experiments 
in a challenging environment where multiple objects are in motion. This paper is a step towards 
integrating biologically inspired algorithms derived in theoretical neuroscience to real world robotic 
setups. We believe that liquid state machines could complement current prediction algorithms used 
in robotics, especially when dealing with asynchronous sensors.

PAPER
2017

RECEIVED  
16 December 2016

REVISED  

16 May 2017

ACCEPTED FOR PUBLICATION  

1 June 2017

PUBLISHED  
1 September 2017

https://doi.org/10.1088/1748-3190/aa7663Bioinspir. Biomim. 12 (2017) 055001

publisher-id
doi
mailto:jkaiser@fzi.de
mailto:stal@fzi.de
mailto:roennau@fzi.de
mailto:dillmann@fzi.de
mailto:anand.subramoney@tugraz.at
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-3190/aa7663&domain=pdf&date_stamp=2017-09-01
https://doi.org/10.1088/1748-3190/aa7663


2

J Kaiser et al

In theoretical neuroscience, liquid state machines 
have been presented as a biologically realistic general 
purpose learning framework, asynchronous by nature 
and well suited to temporal processing. They belong to 
the family of reservoir computing and are implemented 
with spiking neural networks. The liquid can be seen as 
a kernel method performing a time-dependent projec-
tion to a high dimensional space. It allows the training 
of a linear memoryless readout neurons to approxi-
mate non-linear time-dependent functions. They 
have already been used to perform short-term visual 
predictions, from simulated [1] or real [2] frame-based 
sensors. Coupled with event-based sensors, liquid state 
machines have the potential to operate more efficiently 
than with classical frame-based sensors. Indeed, event-
based sensors only perceive changes in the environ-
ment, while the liquid can hold a full representation 
of it thanks to its memory. Echo state networks, the 
non-spiking counterparts of liquid state machines, 
were already considered as feature extractors for event-
based data [12]. However, purely spiking liquid state 
machines have not yet been evaluated in a realistic 
robotic setup with asynchronous full-size visual input.

In this paper, we implement and evaluate a liquid 
state machine predicting future visual input from 
address events provided by a DVS. Compared to pre-
vious works [1, 2], we substantially scale up the input 
dimensionality by two orders of magnitudes by demon-
strating the method on the whole  ×128 128  pixel array. 
The main contribution of this work is the evaluation of 
liquid state machines for short-term prediction on real-
world full-size event streams. This required a proper 
tuning of the liquid hyperparameters (tables 1–3), a 
suitable representation of the event stream (equation 
(2)) and adequate error metrics (section 4). This paper 
is a step towards integrating biologically inspired algo-
rithms derived in theoretical neuroscience to real world 

robotic setups.
After a review of the related work in section 2, we 

describe the biologically inspired architecture of the 
liquid in section 3.1. The training of the readout neu-
rons is based on a simple linear regression described in 
section 3.2. The method is evaluated both in simulation 
against different ball motions, and with a real DVS in 
section 4. In section 5, we discuss how the method could 
be improved and used in closed-loop experiments.

2. Related work

Reservoir computing can be defined as an approach to 
design, train, and analyze recurrent neural networks. 
It is inherently suited to process temporal sequences. 
Recurrent neural networks are powerful, yet hard 
to train. The principle of reservoir computing is 
that solely readout weights are trained, and not the 
recurrent part of the network. Liquid state machines 
and echo state networks [13] are two implementations 
of reservoir computing that were independently 
invented. They usually consist of spiking neurons for 

the former and analog neurons for the later. Liquid state 
machines are biologically inspired models for real-time 
computations on continuous streams of data.

Each neuron within the liquid creates its own non-
linear transformation of the input. A layer of readout 
neurons is connected to some of the neurons in the 
liquid. The liquid state is defined by the post-synaptic 
activity of the liquid neurons that are connected to the 
readouts. The training consists of finding the appro-
priate weights mapping the liquid state to the desired 
signal. It is usually performed with a simple supervised 
linear regression.

That ability of separation and transformation of the 
liquid states into the given target output is called echo 
state property. This property depends directly on the 
complexity of the liquid [14]. It is connected with the 
fading memory property: the previous input has influ-
ence on the current liquid state, but this influence fades 
away.

An interesting study of the computational capabil-
ity of liquid state machines is presented in [15] where 
a bucket of water was used as the physical liquid and 
input streams were injected with two motors. Video 
images of the surface of the water were used as states 
for pattern recognition. The experiment demonstrated 
how a single perceptron which performs a linear clas-
sification can solve a XOR problem if the input is pre-
processed with the water medium. Subsequently, liquid 
state machines have been demonstrated in applications 
ranging from decoding actual brain activity [16] to 
control robots [17–19]. Usually trained in a supervised 
fashion, target output signals must be known for a given 
training set. In robot control, a classical robot controller 
is often derived first, so that the liquid learns the map-
ping between input and target signals specific to this 
controller [17–19]. The focus can be on embodiment 
[17] or spiking network controllers [18, 19].

In this work, we focus on visual motion prediction, 
as in the previous works [1, 2] and, to some extent, [12]. 
In [1], a liquid state machine is used to predict over 
a ×8 8 simulated sensor array. The model of the liq-
uid was constructed to reflect the empirical data from 
microcircuits in the somatosensory cortex of a rat. The 
simulated sensor encodes the proportion of the ball 
occupying the cell at a given instant. The liquid states 
were sampled every 5 ms. Using the same liquid, the 
method successfully trained different readout neurons 
to predict inputs 50 ms in future, where the object will 
exit the frame, and classify two different stimuli (ball 
or bar). The dataset consisted of 1500 samples of linear 
trajectories of the object that was moving with various 
constant speeds and random orientations.

A similar approach was presented in [2] where the 
liquid takes as input real data coming from a frame-
based video camera that was mounted on a robot. The 
goal was to predict movement of the ball in the video 
stream of the robots camera. The sensor itself was 
a color camera with a resolution of ×320 240 pixels. 
However, the frames were pre-processed and down-

Bioinspir. Biomim. 12 (2017) 055001



3

J Kaiser et al

scaled before being fed to the liquid. A color blob detec-
tion algorithm was used to detect the ball in the image, 
which was presented to the  ×8 6  sensor field of the liq-
uid. In the training scenarios, the ball was rolling with 
different velocities and directions across the field. The 
video sequences had different lengths and contained 
images sampled every 50 ms. The prediction took place 
over multiple time steps for 100 ms, 200 ms and 300 ms. 
It has been stated that it was possible to reliably predict 
ball movement up to 200 ms ahead, but that it was not 
possible to visually identify the ball position for the pre-
diction time of 300 ms.

Echo state networks have recently been evaluated 
on event-based data in [12]. The goal was to learn 
spatiotemporal features for event-based data. Many 
feature-specific echo state networks are trained simul-
taneously to predict over receptive fields of the event 
stream. Address events are sampled in intervals and 
converted with an exponential filter before being fed to 
the echo state networks. This exponential filter is simi-
lar to the one we describe in equation (2), which we use 
to represent target signals but not to pre-process input 
events. In the conducted experiments, an echo state 
network predicts a single motion over ×17 17 input 
cells, at most. Moreover, the predictions are provided 
for one timestep in the future. Unlike [12], we take in 
this paper a global approach where only one liquid state 
machine is trained to predict over the whole  ×128 128 
pixel array. Additionally, we present results on how the 
prediction time ∆pred affects the performance.

In this paper, we implement and evaluate a liq-
uid state machine predicting future visual input 
from address events provided by a DVS. Compared 
to previous works [1, 2], we substantially scale up the 
input dimensionality by two orders of magnitudes by 
demonstrating the method on the whole ×128 128 
pixel array, without pre-processing. Moreover, the 
event-based nature of the DVS brings several advan-
tages. Firtly, there is no issue of motion blur and we 
can sample the liquid state at high frequency, since the 
DVS continuously delivers address events. Secondly, 
the representation of the environment by the liquid is 
more efficient since the DVS only perceives changes. 
We propose a smooth continuous representation 
to generate target signals for the readouts (see equa-
tion (2) and figure 2) to deal with the task of predict-

ing visual input from event streams. To the best of our 
knowledge, liquid state machines have not yet been 
evaluated in a realistic robotic setup with asynchro-
nous full-size visual input.

3. The liquid state machine

In this paper, we propose a liquid state machine to 
predict visual input from address events using a DVS, 
see figure 1. This section describes the architecture of 
the liquid, along with the generation of the targets for 
the supervised training procedure.

3.1. Architecture
The liquid state machine consists of three distinct 
parts: an input layer, a liquid and an output layer. The 
input layer consists of spike generator neurons having 
the same dimensionality as the input. The address 
events emitted by the DVS are represented as spikes in 

Table 1. Hyper-parameters of the liquid. We chose them 
experimentally for the liquid to run in a good regime [14, 32]. They 
are kept constant across all evaluation scenarios.

Parameter Variable Value

Number of excitatory liquid 

neurons

nexc 1000

Number of inhibitory liquid 

neurons

ninh 250

Number of recorded liquid 

neurons

nrec 500

Number of synapses between  

input and liquid

ninpsyn 102 400

Table 3. NEST Parameters of the distributions used for synaptic 
delays, weights and noise. Inspired by [33].

Parameter Distribution Mean Deviation

Strength of the EE  

connection (pA)

Normal 5.0 ⋅0.7 5.0

Strength of the EI  

connection (pA)

Normal 25.0 ⋅0.7 25.0

Strength of the II  

connection (pA)

Normal −20.0 ⋅ −0.7 20.0( )

Strength of the IE  

connection (pA)

Normal −20.0 ⋅ −0.7 20.0( )

Delay of all the  

connections (ms)

Normal clipped 

[3.0,200.0]

10.0 20.0

Strength of the input 

current (pA)

Log-normal  

clipped [0.0,14.9]

2.65 0.025

Strength of the noise 

(pA)

Normal 1.0 ⋅0.7 1.0

Delay of the noise  

(ms)

Normal clipped 

[3.0,200.0]

10.0 20.0

Table 2. NEST Parameters of the leaky integrate-and-fire neuron 
model with exponential shaped post-synaptic currents (iaf_psc_
exp). Inspired by [33].

Parameter Variable Value

Resting membrane potential (mV) EL 0.0

Capacity of the membrane (pF) Cm 30.0

Membrane time constant (ms) τm 30.0

Duration of refractory period 

(Vm  =  Vreset) (ms)

tref 2.0

Membrane potential (mV) Vm 10.0

Spike threshold (mV) Vth 15.0

Reset membrane potential after  

a spike (mV)

Vreset 13.8

Time constant of post-synaptic  

excitatory currents (ms)
τsyn

ex 3.0

Time constant of post-synaptic  

inhibitory currents (ms)
τsyn

inh 2.0

Bioinspir. Biomim. 12 (2017) 055001



4

J Kaiser et al

the respective input neurons. Input neurons connect 
randomly in a feedforward fashion to excitatory 
neurons in the liquid. We use a constant number of 
synapses ninpsyn between the input and the liquid.

The liquid consist of randomly connected leaky 
integrate-and-fire neurons, 80% of which are excita-
tory and 20% inhibitory. Such proportion is biologi-
cally inspired [1]. The liquid neuron parameters are 
described in table 2. We use dynamic synapses [20] for 
the connections within the liquid in order to stabilize 
the activity regime [21]. Furthermore, decorrelation 
between liquid neurons is introduced by drawing syn-
aptic delays, current bias and connection strengths 
from a probability distribution. Parameters of these 

distributions are described in table 3.
We connect nrec excitatory liquid neurons all-to-

all to perfect linear readout neurons in a feedforward 
fashion. Only these connections are trained, with a pro-
cedure described in section 3.2. The readout neurons 
map the liquid activity to the desired output. Note that 
=n nrec exc (i.e. all-to-all connection between internal 

excitatory liquid neurons and readouts) is a common 
choice [2, 19]. In this paper, we only map a fraction of the 
excitatory neurons to the output, which lowered mem-
ory consumption and did not impact the performance.

The connection strengths between input and liq-
uid neurons, as well as within the liquid can be tuned 
to make the liquid memory driven or input driven. 
For example, by increasing the connection strengths 
between input and liquid neurons, the activity regime 
of the liquid will depend more on the inputs than its 
memory.

3.2. Training
The training part of a liquid state machine consists of 
finding the proper weights of the connections between 
the liquid and the readout neurons. Let ∈w Ri

nrec 
be the weights between a readout neuron i and the 
set of recorded liquid neurons. Training consists of 

finding the proper weights for all readout neurons 
covering the output pixel array =W w w, ..., p11[ ], with 
= ×p rows columns the number of pixels.

The liquid state R∈x t nrec( )  is a vector contain-
ing the post-synaptic potentials of the nrec recorded 
liquid neurons at time t. We sample the liquid state 
at discrete timesteps of ∆sample for ∈t t0, train[ ]. They 
are accumulated into a matrix R∈ ×X n nrec samples, with 

= ∆n tsamples train sample/ . The matrix X contains all the 
liquid states encountered during training. We therefore 
have the linear system for all readout neurons i:

⋅ =X w b ,i i (1)

with R∈bi
nsamples the sampled target signals of readout 

neuron i. In other words, each readout neuron solves a 
linear regression to map the accumulated liquid states 
to accumulated target signals for this neuron. To reduce 
overfitting, we use a regularized linear regression which 
penalizes strong synaptic weights. The regularization 
parameter λ is selected with respect to a cross-validation 
dataset.

Since we are using the liquid to predict future input, 
the target signals are built from input spiketrains shifted 
by a duration of ∆pred. The duration ∆pred is an hyper-
parameter and determines how long in the future we 
want to predict.

A proper representation of the visual information 
for the target signals is essential for robust learning. 
Indeed, naively trying to output binary values repre-
senting the presence of a spike in the time interval does 
not work well due to the instantaneous character of 
spikes. Instead, we generate target signals by convert-
ing an input spiketrain to continuous values between 0 
and 1 depending on recent spiking activity, see figure 2. 
Specifically, we define the target signal bi for neuron i:

⎧
⎨
⎪

⎩⎪
τ

= −
−

= +∆

f t
t t

b t f t

exp

,

i
i

i i

spike

pred

( ) ( )

( ) ( )
 (2)

Figure 1. Our method to perform short-term visual predictions from address events provided by a DVS using a liquid state 
machine. Events from the DVS are converted to spikes and directly fed to the excitatory pool of neurons in the liquid. We use the 
function bi (see equation (2)) to sample all input neurons i into target images used only for training. A layer of readout neurons of 
the same dimensionality as the input is connected to nrec excitatory neurons of the liquid. Those connections are trained at time t 
with the target image sampled at time +∆t pred. In the test phase, unseen events are streamed to the liquid and the activity of the 
readout neurons encodes the predicted future input. The input image is just shown for visualization purposes, only address events 
are streamed to the liquid. Reproduced with permission from iniVation AG.

Bioinspir. Biomim. 12 (2017) 055001



5

J Kaiser et al

with ∈t t0,i
spike [ ] the last spike time of input neuron 

i, and τ a global fading term. the function fi maps a 
spiketrain of a neuron i to a continuous signal, while 
the function bi shifts this signal in time by ∆pred, since 
we are performing a prediction task. Both fi and bi are 
visualized in figure 2.

It is important to note that, unlike classical frame-
based methods, the samples taken for training do not 
coincide with the frame-rate of the sensor. Since both 
the DVS and the liquid output continuous streams, the 
parameter ∆sample can be tuned without modifying the 
method or changing the sensor.

4. Evaluation

The liquid state machine is implemented using the 
NEST neural network simulator [22]. We evaluate 
the method both in simulation and with a real DVS. 
The DVS simulation is taken from [23]. It renders, 
subtracts and then thresholds consecutive frames of 
a classic simulated camera, and output the results as 
address events. With a sufficient simulated frame-rate, 
individual pixels can be emitted independently, just like 
a real DVS. This simulation is not as complex as the one 
presented in [24] but is more convenient since it can be 
used from the robotic simulator Gazebo [25] directly.

4.1. Experimental setup
The architecture and parameters of the liquid are 
described in table 1 and kept constant whether the 
events come from a simulated or a real DVS.

We use a reduced input array of ×32 32 for the 
simulated DVS. The number of synapses between 
input layer and the liquid is kept constant regardless of 
the input dimensionality. That is, an input neuron in a 
×32 32 scenario will have more synapses with the liq-

uid than an input neuron in a ×128 128 scenario. This 
allows us to scale up and down input dimensionality 
without perturbing the regime of the liquid.

We evaluate the method in three scenarios. In the 
first scenario, a simulated DVS observes a ball perform-
ing distinct projectile trajectories overlapping with 

each other. With this scenario, we evaluate the ability of 
our method to predict different motions, based on its 
memory. In the second scenario, a real DVS observes a 
ball rolling down a structure. This scenario proves that 
the method can scale up to a real DVS in simple setups. 
In the third scenario, a real DVS observes a person jug-
gling with three balls. This is an evaluation whether the 
method can be used on complex scenes with multiple 
objects in motion. The three scenarios can be visualized 
in figure 3.

We cross-validate the regularization parameter λ 
two times: once for the simulated ×32 32 DVS and once 
for the real ×128 128 DVS. All others parameters are 
kept constant and described in tables 1–3.

In each scenario, we first present the emitted address 
events for a time ttrain to the liquid and record the liq-
uid states. We then train the readout weights with the 
procedure described in section 3.2. Finally, the liquid 
is presented new address events it has never seen before 
for a time ttest. We set the sampling time interval of the 
liquid to ∆ = 10sample  ms. Predictions are generated by 
reading from the readout neurons at the same sample 
rate ∆1 sample/  used for training.

We evaluate the performance of the method with 
respect to the predictions generated by the liquid. We 
define two metrics to evaluate the predictions. The first 
metric is general and consists of computing the nor-
malized error for all predictions:

∑=
⋅
⋅ ⋅ −
=

W X be
n p

w
1

,i
i

p

i1
samples
test

1

test( ) ∥ ∥ (3)

with X test the accumulated liquid states during the test 

period, and nsamples
test  the number of samples in the test 

set. The residual error is the one we implicitly minimize 
when solving the linear equations for all readout 
neurons, see equation (1). This metric is not ideal for 
our problem since it does not take into account the 
2D spatial structure of our pixel array. Indeed, if we 
predict high activation at a given pixel location, but the 
activated pixel turns out to be the neighboring one, we 
would like to penalize this less than if the activation was 
predicted at the other side of the image.

Figure 2. Visualization of the training of readout neuron i. To generate a target signal, we first apply fi to map the input spiketrain 
to continuous values. It is then shifted by ∆pred with the function bi, see equation (2). During training, the readout neuron i learns a 
mapping between the liquid state x t( ) to bi(t) for all times t.

Bioinspir. Biomim. 12 (2017) 055001



6

J Kaiser et al

The second metric we propose takes the spatial 
structure into account but is meaningful only when a 
single object is in motion. We therefore use this metric 
only for scenario 1 and 2, but not scenario 3 which has 
many objects in motion. The second metric consists of 
computing the distance between the centroid positions 
of the prediction and the target image. We define the 
centroid of an image as the average position of the acti-
vation:

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∑

∑
= =

∑
⋅

⋅

⋅
c I

I

I

I

r
c r c

r c r

r c c

1

,

,

,
,c

c

r c

r c

r c,

,

,

( )
( )

( )

( )
 (4)

with I an input image. The second error metric can 
therefore be expressed as:

∑

∑ ⋅

= ⋅ −

= ⋅ −

∈

∈

W c c

c x t W c b t

e
n

n

1
predicted target

1
,

t

t

t

t

2
samples
test

samples
test

tteesstt

tteesstt

( ) ∥ ( ) ( )∥

∥ ( ( ) ) ( ( ))∥

 (5)

with t tteesstt the sampled times during test, and b t( ) the 
target signals for all readouts at time t. Here, we assume 
that both the prediction ⋅x t W( )  and the target signals 
b t( ) are reshaped to images of size ×rows columns 
before the computation of the centroid. In practice, 
when evaluating our prediction with this metric in the 
following scenarios, we also threshold low activations 
from the readouts before computing the centroid 
position. This has proved to greatly reduce the impact 
of the ambient noise inherent from the method.

4.2. Results
We first present the results obtained for the cross-
validation of the regularization parameter λ. Then, we 
present the results obtained on the different scenarios 
using the selected regularization parameters. For 
each scenario, we show two representative prediction 
samples (figures 5, 8 and 11). Input and Target denotes 
the encoded input spiketrain at a given time t and 
+∆t pred, see equation (2). Predicted is the output from 

the liquid at time t and Error refers to the residual error 

(equation (3)), which is the difference between Predicted 
and Target. In the quantitative evaluations, both error 
metrics (equation (3), solid blue line and equation (5), 
dashed red line) are presented with varying amount of 
training data and increasing prediction times ∆pred.

4.3. Cross-validation
We first cross-validate the regularization parameter λ 
both for the simulated ×32 32 and real ×128 128 DVS. 
We follow the same setup as described in section 4.1 
with constant prediction time ∆ = 200pred  ms and 
λ varying on a log scale. The dataset used for cross-
validation was held separate from training and testing 
sets.

As can be seen in figure 4(a), both metrics are min-
imal for λ = 104 for the simulated DVS. For the real 
DVS (figure 4(b)), the centroid error remains roughly 
constant for λ 103⩽  and then starts increasing. Mean-
while, the residual error is decreasing for λ 101⩾ . This 
is due to the fact that the generated targets for the pre-
dictions have a sparse activation on the ×128 128 pixel 
array (only few pixels are active at a time). Indeed, high 
values of λ will force the weights W  to be small, hence 
the prediction activation to be weak. Therefore, a naive 
prediction algorithm returning null activations for all 
readouts at any time would have a low error according 
to the residual error metric. This is a common pitfall 
in statistics for problems containing a relatively small 
amount of positive samples. In such cases, precision 
and recall metrics are often preferred. However, it is not 
trivial to adapt these metrics to our spatio-temporal 
problem of prediction. We therefore pick λ = 103 for 
the real DVS scenarios.

4.4. First scenario: simulated projectile trajectories
The training set consists of 10 ball trajectories. In half of 
those, the ball jumps from left to right, and in the other 
half, from right to left. The total duration of the training 
set is 27.6 s. The test set consists of a single jump from 
left to right lasting 1.9 s.

Since the training set contains both left to right and 
right to left ball motions, the liquid has to rely on its 
memory to properly predict the test motion.

(a) (b) (c)

Figure 3. The three scenarios against which we validate our method. (a) The first scenario. A ×32 32 simulated DVS observes a ball 
jumping from left to right and from right to left of the pixel array. (b) The second scenario. A real DVS observes a ball rolling down a 
structure. This image depicts the point of view of the DVS. (c) The third scenario. A real DVS observes a person juggling with three 
balls. This image depicts the point of view of the DVS.

Bioinspir. Biomim. 12 (2017) 055001



7

J Kaiser et al

(a) (b)

Figure 4. Cross-validation of the regularization parameter λ with the ×32 32 simulated DVS and the ×128 128 real DVS. Both 
metrics presented in equations (3) and (5) are shown. For the simulated DVS, the cross validation set consists of a ball jumping from 
right to left. For the real DVS, the cross validation set consists of a ball rolling down the structure. (a) Residual and centroidal error 
for the DVS simulation. Both error metrics admit a minimum at λ = 104. (b) Residual and centroidal error for the real DVS. The 
positional error is roughly constant for λ 103⩽ , and then starts increasing. On the other hand, the residual error decreases for λ 101⩾ . 
Indeed, high values of λ will decrease overall readout activation, and since the target activation is sparse on the large ×128 128 pixel 
array, this metric decreases. We therefore consider the centroidal error metric and select λ = 103 for the real DVS scenarios.

Figure 5. Selected test samples from the first scenario at prediction time ∆ = 200pred  ms. (a) The ball starts descending after 
reaching its highest point, the liquid predicts the fall. (b) The ball is reaching its highest point where only a few address events are 
emitted. The prediction is weak, suggesting that our liquid is probably too input driven.

(a) (b)

Figure 6. Residual error and centroidal error obtained in the first scenario: simulated ball jumping left and right. (a) Error with 
respect to the amount of training data used with ∆ = 200pred  ms. (b) Error with respect to prediction time ∆pred.

Bioinspir. Biomim. 12 (2017) 055001



8

J Kaiser et al

As seen in the samples (figure 5), the liquid can 
rely on its memory to properly predict the motion. 
Indeed, both ball motions (from left to right and 
from right to left) seen during training are covering 
the same pixels of the image but in different order. To 
provide successful predictions, the liquid is therefore 
remembering previous address events and not only 
the current ones.

The method needs to be trained with at least 20% 
of the training set before the yielding good predictions 

with respect to both our metrics (figure 6(a)). Indeed, 
since the training contains 10 complete motions of two 
classes, a portion below 20% does not contain the two 
motions entirely. This means that the method should 
be trained with similar motions as the one it tries to 
predict. For ratios bigger than 20% the residual error 
slightly increases but not the positional error. There-
fore, it is not required that the training set contains 
multiple times the same motions (e.g. ball jumping left 
to right).

(a) (b)

(c)

Figure 7. Target and predicted centroids for the first scenario across the whole test motion for varying prediction times.  
(a) Prediction time ∆ = 100pred  ms. (b) Prediction time ∆ = 200pred  ms. (c) Prediction time ∆ = 300pred  ms.

Figure 8. Selected test samples from the second scenario at prediction time ∆ = 200pred  ms. (a) The ball is rolling on the structure, 
the liquid predicts its path. (b) The ball has reached the end of the structure, the liquid predicts the hand that will lift it up back to the 
top of the structure.

Bioinspir. Biomim. 12 (2017) 055001



9

J Kaiser et al

Both residual and centroidal error metrics increase 
with ∆pred, the amount of time predicted in the future 
(figure 6(b)). Before computing the centroid of the pre-
diction, we nulled out the readout neurons with activa-
tion below 0.05, mostly caused by ambient noise. The 
target and predicted centroids are displayed for various 
∆pred in figure 7. The method successfully managed to 
learn the trajectory of the ball.

4.5. Second scenario: rolling ball on structure
The training set consists of the ball rolling two and a half 
times down the structure. When the ball arrives to the 
end of the structure, it is manually replaced on top of it. 
The total duration of the training set is 15 s. The test set 
consists of the ball rolling down the structure a single 
time lasting 6.8 s.

The method performs successful predictions for 
∆ 200⩽  ms, as can be seen in figures 8 and 10. This 
proves that our method can scale up from ×32 32 sim-
ulated DVS to the whole ×128 128 real DVS without 

tuning any hyperparameter of the liquid. Before com-
puting the centroid of the predictions, we nulled out 
the readout neurons with activation below 0.15. This 
threshold is slightly higher than for the first scenario 
because the regularization parameter λ = 103 is lower, 
yielding the active readouts to have stronger activations.

It seems that the liquid performs better predictions 
when the input is strong, such as the hand entering the 
image in figure 8(b).

Both error metrics exhibit the same behavior as 
the first scenario, showing the liquid learning capa-
bility (figure 9). The same conclusions can be drawn 
from the first scenario with regard to the content of 
the training set, see figure 9(a). This time, the method 
does not achieve good results before being trained with 
at least 40% of the training set, which coincides with 
the first full run of the ball on the structure. At 80% of 
the training set, the results did not improve, showing 
that it is not necessary to have multiple times the same 
motions in the training set. We note that the residual 

(a) (b)

Figure 9. Residual error and centroidal error obtained in the second scenario: ball rolling on a structure. (a) Error with respect to 
the amount of training data used with ∆ = 200pred  ms. (b) Error with respect to prediction time ∆pred.

(a)

(c)

(b)

Figure 10. Target and predicted centroids for the second scenario across the whole test motion for varying prediction times.  
(a) Prediction time ∆ = 100pred  ms. (b) Prediction time ∆ = 200pred  ms. (c) Prediction time ∆ = 300pred  ms.

Bioinspir. Biomim. 12 (2017) 055001



10

J Kaiser et al

error is smaller with the real ×128 128 DVS than with 
the simulated ×32 32 DVS. This is because the residual 
error is normalized by the number of readouts (see 
equation (3)), and that the activation is sparser for the 
second scenario than the first one.

4.6. Third scenario: juggling with three balls
The training set consists of a juggler juggling with three 
balls for 29.7 s. The test set consists of the same juggler 
juggling for another 5.5 s.

Since there is more than a single moving object in 
the third scenario, the activation is more hectic. It also 
prevents us to use the centroid error metric, as in this 
case the centroid is the center of the juggler and remains 
roughly static over time. We can still recognize the jug-
gler and the silhouettes of the balls in the liquid’s pre-
dictions, see figure 11. However, these predictions are 

probably not sufficiently clear to be used in an actual 
robotic application. Unlike the previous scenarios, 
increasing learning data might help as the error keeps 
decreasing, as can be seen in figure 12(a). The residual 
error is much higher than in the other scenarios due to 
the motion covering more pixels.

This suggests that the input data should be 
abstracted before being fed to the liquid for predic-
tions. Operating on abstracted visual input, the activa-
tion would be sparser, hence more similar to previous 
scenarios. Moreover, with convolutional layers, one 
could also make the method more translation invari-
ant. However, the visual predictions would be made in 
the latent space instead of the input space. One should 
therefore prefer an abstraction method which can also 
reconstruct the input from the latent space, such as 
auto-encoders or restricted boltzmann machines [26].

(a) (b)

Figure 12. Residual error error obtained in the third scenario: juggling with three balls. The centroidal error is not relevant in 
this case: since the juggler himself does not move across the image, the centroid of activation is static. (a) Error with respect to the 
amount of training data used with ∆ = 200pred  ms. (b) Error with respect to prediction time ∆pred.

Figure 11. Selected test samples from the third scenario at prediction time ∆ = 200pred  ms. (a) The hand on the left of the image 
has thrown a ball and is currently catching one. In the target image (200 ms later), the hand on the right just threw a third ball and is 
receiving the one seen on the input image. In the liquid output, we can recognize the position of the hands of the juggler and the two 
balls present in the target image. (b) This sample is the opposite of the previous one: a ball is thrown from the right and caught on the 
left of the image. The liquid predicted the ball trajectory but is confused with respect to the position of the hands.

Bioinspir. Biomim. 12 (2017) 055001



11

J Kaiser et al

Depending on the application, one might also want 
to segment the visual input stream. In this scenario, the 
liquid was not trained to predict what motions depend 
on each other. If the juggler would throw a single ball 
from a side to another, the liquid would predict another 
one coming from the other side, since it has been trained 
with a three ball juggling pattern.

5. Discussion and future work

In this paper, we presented a liquid state machine 
approach to perform short-term visual predictions 
from address events provided by a DVS. Based on 
spiking neural network, this method provides a 
framework for learning which handles the event-based 
nature of the DVS by design. Moreover, thanks to the 
asynchronous regime of the liquid, the predictions can 
be requested on demand at anytime, instead of being 
provided upon new sensor data. These advantages make 
liquid state machines good candidates to complement 
the prediction step of many robotic algorithms, 
especially when dealing with asynchronous sensors.

This paper is a step towards integrating liquid state 
machines, which are biological models derived in 
neuroscience, to real world robotic setups. The main 
contrib ution of this work is the evaluation of liquid state 
machines for short-term prediction on real-world full-
size event streams. Properly representing visual target 
signal was a crucial step for the method to provide rel-
evant predictions. By evaluating our approach on vari-
ous scenarios of increasing complexity, we have shown 
that the method was able to learn different motions on 
the full scale  ×128 128 pixel arrays of the DVS, without 
any knowledge about its environment or physical laws. 
It is therefore well suited to fast robotic tasks where no 
knowledge about the environment is available. How-
ever, we identified in the third experiment scenario that 
the liquid was not able to deal with multiple objects in 
motion at the same time. Indeed, in a real robotic appli-
cation, raw DVS events should be abstracted or seg-
mented before being fed to the liquid. Unlike [2] which 
downscales the input image to a  ×8 6 sensor field, one 
could extract high-level features from the complete 
event stream with a convolutional spiking network [26, 
27, 28]. Similar approaches already yielded promising 
results with analog neural networks [29].

The most interesting aspect of the liquid state 
machine resides in its genericity and the simple learn-
ing procedure. In the future, we could add input neu-
rons to stream different information to the liquid. For 
instance, an inertial stream provided by an IMU could 
be combined with the DVS stream. A pool of readout 
neurons could then be trained to provide absolute scale 
self velocity. The liquid and the readouts would there-
fore perform a sensor fusion internally, without any 
change in the current architecture.

However, the simple learning procedure also admits 
drawbacks. Since it is based on a supervised off-line lin-
ear regression, data has to be collected and target signals 

have to be known. In literature, different approaches 
have been presented to overcome these constraints. In 
[21], a recursive least-squares algorithm is used, so that 
the liquid can be trained on-line while performing a 
task. Alternatively, several reward-modulated STDP 
rules [30, 31] have been suggested so that the method 
could learn in a reinforcement learning fashion, with-
out known target signals. With an online learning rule 
to train the readout neurons, no training phase would 
be required and the robot would be able to learn new 
motions while operating.

Acknowledgments

The research leading to these results has received 
funding from the European Union Horizon 2020 
Programme under grant agreement n.720270 (Human 
Brain Project SGA1).

References

 [1] Maass W, Legenstein R and Markram H 2002 A new approach 
towards vision suggested by biologically realistic neural 
microcircuit models Int.Workshop on Biologically Motivated 
Computer Vision (Berlin: Springer) pp 282–93

 [2] Burgsteiner H et al 2007 Movement prediction from real-world 
images using a liquid state machine Appl. Intell. 26 99–109

 [3] Kalman R E 1960 A new approach to linear filtering and 
prediction problems J. Basic Eng. 82 35–45

 [4] Kim S et al 2014 Catching objects in flight IEEE Trans. Robot. 
30 1049–65

 [5] Allibert G and Courtial E 2009 What can prediction bring to 
image-based visual servoing? IEEE/RSJ Int. Conf. on Intelligent 
Robots and Systems (St Louis, MO, USA, 10–15 October 2009) 
pp 5210–5

 [6] Mueggler E et al 2015 Towards evasive maneuvers with 
quadrotors using dynamic vision sensors European Conf. on 
Mobile Robots (Lincoln, UK, 2–4 September 2015) (https://doi.
org/10.1109/ECMR.2015.7324048)

 [7] Foka A F and Trahanias P E 2002 Predictive autonomous 
robot navigation IEEE/RSJ Int. Conf. on Intelligent Robots and 
Systems vol 1 pp 490–5

 [8] Tow A et al 2017 What would you do? Acting by learning to 
predict IROS in preparation (arXiv:1703.02658)

 [9] Copete J L et al 2016 Motor development facilitates the 
prediction of others’ actions through sensorimotor predictive 
learning Joint IEEE Int. Conf. on Development and Learning and 
Epigenetic Robotics (Cergy-Pontoise, France, 19–22 September 
2016) pp 223–9

 [10] Lichtsteiner P et al 2008 A ×128 128 120 db 15 μs latency 
asynchronous temporal contrast vision sensor IEEE J. Solid 
State Circuits 43 566–76

 [11] Mueggler E et al 2015 Lifetime estimation of events from 
dynamic vision sensors Int. Conf. on Robotics and Automation 
pp 4874–81

 [12] Lagorce X et al 2015 Spatiotemporal features for asynchronous 
event-based data Frontiers Neurosci. 9 46

 [13] Lukoševičius M and Jaeger H 2009 Reservoir computing 
approaches to recurrent neural network training Comput. Sci. 
Rev. 3 127–49

 [14] Grzyb B et al 2009 Which model to use for the liquid state 
machine? Int. Joint Conf. on Neural Networks (Atlanta, GA, 
USA, 14–19 June 2009) pp 1018–24

 [15] Fernando C and Sojakka S 2003 Pattern recognition in a bucket 
European Conf. on Artificial Life (Berlin: Springer) pp 588–97

 [16] Nikolić D et al 2009 Distributed fading memory for 
stimulus properties in the primary visual cortex PloS Biol. 
7 e1000260

Bioinspir. Biomim. 12 (2017) 055001

https://doi.org/10.1007/3-540-36181-2_28
https://doi.org/10.1007/3-540-36181-2_28
https://doi.org/10.1007/s10489-006-0007-1
https://doi.org/10.1007/s10489-006-0007-1
https://doi.org/10.1007/s10489-006-0007-1
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1109/TRO.2014.2316022
https://doi.org/10.1109/TRO.2014.2316022
https://doi.org/10.1109/TRO.2014.2316022
https://doi.org/10.1109/IROS.2009.5354208
https://doi.org/10.1109/IROS.2009.5354208
https://doi.org/10.1109/ECMR.2015.7324048
https://doi.org/10.1109/ECMR.2015.7324048
http://arxiv.org/abs/1703.02658
https://doi.org/10.1109/DEVLRN.2016.7846823
https://doi.org/10.1109/DEVLRN.2016.7846823
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.3389/fnins.2015.00046
https://doi.org/10.3389/fnins.2015.00046
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1109/IJCNN.2009.5178822
https://doi.org/10.1109/IJCNN.2009.5178822
https://doi.org/10.1371/journal.pbio.1000260
https://doi.org/10.1371/journal.pbio.1000260


12

J Kaiser et al

 [17] Urbain G et al 2017 Morphological properties of mass 
spring networks for optimal locomotion learning Frontiers 
Neurorobot. 11 16

 [18] Burgsteiner H 2005 Training networks of biological realistic 
spiking neurons for real-time robot control Proc. of the 9th Int. 
Conf. on Engineering Applications of Neural Networks (Lille, 
France) pp 129–36

 [19] Probst D et al 2012 Liquid computing in a simplified model of 
cortical layer iv: learning to balance a ball Int. Conf. on Artificial 
Neural Networks ed A E P Villa et al (Berlin: Springer) pp 209–16

 [20] Markram H et al 1998 Differential signaling via the same axon of 
neocortical pyramidal neurons Proc. Natl Acad. Sci. 95 5323–8

 [21] Sussillo D and Abbott L F 2009 Generating coherent patterns 
of activity from chaotic neural networks Neuron 63 544–7

 [22] Gewaltig M-O and Diesmann M 2007 NEST (neural 
simulation tool) Scholarpedia 2 1430

 [23] Kaiser J et al 2016 Towards a framework for end-to-end 
control of a simulated vehicle with spiking neural networks 
IEEE Int. Conf. on Simulation, Modeling, and Programming for 
Autonomous Robots (San Francisco, CA, USA, 13–16 December 
2016) pp 127–34

 [24] Mueggler E et al 2016 The event-camera dataset and simulator: 
event-based data for pose estimation, visual odometry and 
SLAM (arXiv:1610.08336)

 [25] Koenig N and Howard A 2004 Design and use paradigms for 
gazebo, an open-source multi-robot simulator Int. Conf. on 
Intelligent Robots and Systems (Sendai, Japan, 28 Sept.-2 Oct. 
2004) vol 3 (IEEE) pp 2149–54

 [26] Kaiser J et al 2017 Spiking convolutional deep belief networks 
Int. Conf. on Artificial Neural Networks submitted

 [27] Kheradpisheh S R et al 2016 STDP-based spiking deep neural 
networks for object recognition (arXiv:1611.01421)

 [28] Hunsberger E and Eliasmith C 2015 Spiking deep networks 
with LIF neurons 1–9 (arXiv:1510.08829)

 [29] Finn C and Levine S 2016 Deep visual foresight for planning 
robot motion (arXiv:1610.00696)

 [30] Kappel D et al 2017 Reward-based stochastic self-
configuration of neural circuits (arXiv:1011.1669v3)

 [31] Florian R V 2005 A reinforcement learning algorithm 
for spiking neural networks Seventh Int. Symp. on 
Symbolic and Numeric Algorithms for Scientific Computing 
(Synasc) (Timisoara, Romania, 25–29 September 2005) p 8

 [32] Legenstein R and Maass W 2007 Edge of chaos and prediction 
of computational performance for neural circuit models 
Neural Netw. 20 323–4

 [33] Principles of Brain Computation, TU Graz 2016 http://
igi.tugraz.at/lehre/PrinciplesOfBrainComputation/SS16/ 
(accessed: 08 October 2016)

Bioinspir. Biomim. 12 (2017) 055001

https://doi.org/10.3389/fnbot.2017.00016
https://doi.org/10.3389/fnbot.2017.00016
https://doi.org/10.1007/978-3-642-33269-2_27
https://doi.org/10.1007/978-3-642-33269-2_27
https://doi.org/10.1073/pnas.95.9.5323
https://doi.org/10.1073/pnas.95.9.5323
https://doi.org/10.1073/pnas.95.9.5323
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1109/SIMPAR.2016.7862386
https://doi.org/10.1109/SIMPAR.2016.7862386
http://arxiv.org/abs/1610.08336
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
http://arxiv.org/abs/1611.01421
http://arxiv.org/abs/1510.08829
http://arxiv.org/abs/1610.00696
http://arxiv.org/abs/1011.1669v3
https://doi.org/10.1109/SYNASC.2005.13
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1016/j.neunet.2007.04.017
http://igi.tugraz.at/lehre/PrinciplesOfBrainComputation/SS16/
http://igi.tugraz.at/lehre/PrinciplesOfBrainComputation/SS16/

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Scaling up liquid state machines to predict over address events from dynamic vision sensors
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Related work
	﻿﻿3. ﻿﻿﻿The liquid state machine
	﻿﻿3.1. ﻿﻿﻿Architecture
	﻿﻿3.2. ﻿﻿﻿Training

	﻿﻿4. ﻿﻿﻿Evaluation
	﻿﻿4.1. ﻿﻿﻿Experimental setup
	﻿﻿4.2. ﻿﻿﻿Results
	﻿﻿4.3. ﻿﻿﻿Cross-validation
	﻿﻿4.4. ﻿﻿﻿First scenario: simulated projectile trajectories
	﻿﻿4.5. ﻿﻿﻿Second scenario: rolling ball on structure
	﻿﻿4.6. ﻿﻿﻿Third scenario: juggling with three balls

	﻿﻿5. ﻿﻿﻿Discussion and future work
	﻿﻿﻿﻿﻿﻿Acknowledgments
	﻿﻿References﻿﻿﻿﻿


