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Abstract

A programmable logic controller (PLC) is a digital computer used for sequential

control of electromechanical processes, such as control of machinery in factory as-

sembly lines. There are various types of PLC programs, the most commonly used in

industries being Ladder Logic (LL). PLC programs in large manufacturing compa-

nies tend to grow very large and unwieldy over time. The problem is compounded

by the fact that PLC programs have no higher level abstraction mechanisms or soft-

ware ‘libraries’ that standardise repeatedly used functions. Lots of functions are

re-implemented redundantly and slightly differently each time. Hence, diagnosis or

even reuse of code becomes increasingly difficult. The problem is compounded by the

presence of incompatible storage and execution formats. A process to get the design

intent from legacy PLC programs would make reuse of code, fault diagnosis, and do-

cumentation much easier, and hence decrease re-engineering and re-implementation

costs. So far, various attempts have been made using other methods to get the design

intent. Younis and Frey’s papers on visualising PLC programs using XML [1] and

converting it to UML diagrams[2] gives a higher level abstraction, but it does not

capture the information on design intent. Other attempts have involved converting

LL programs to Petrinets [3] and finite automata [4]. Both these methods can only

be used to verify the program against a given set of specification, and cannot be used

for design retrieval. For large programs, both these methods lead to an extremely

complicated representation of the program, which necessitates slicing of the program

into smaller portions. The paper titled “Design recovery for Relay Ladder Logic”

[5] outlines a method to obtain a Sequential Function Chart (SFC) from an LL pro-

gram. An SFC is very useful in understanding the control flow of the LL program,

and hence, the design intent. But the major drawback of this method is that there

is no completely automated way to achieve this conversion in a rigorous way. In the



field of conventional computer software, reverse engineering and design retrieval has

been well researched, but they are not directly applicable to PLC programs because

of differences in structure and concepts. This thesis proposes an approach to obtain

the design intent from PLC programs using a combination of formal methods and

heuristic algorithms. The objective of this work is to get a representation of the pro-

gram without intermediate relays which would directly relate outputs with physical

inputs, and hence allow the user to get a clear understanding of the relation between

various elements of the physical system. Use is made of the vast amount of know-

how accumulated in the field design retrieval of conventional computer programs, and

the approach is being modified to fit the specific characteristics of PLC programs.

In particular, the use of parsers employing context-free grammars is borrowed from

this field. The challenges include taking into account the specific characteristics of

PLC programs – massively multi-parallel execution, absence of pre-defined libraries,

and a very low-level expression set. Apart from that, the methodology and format

for defining patterns have to be simple enough to be practical. The steps involved

in achieving the above mentioned objective are: Converting the program from the

L5K format to a format that can be parsed; Defining a context-free grammar for LL

programs; Generating the parse tree using context-free grammar principles; substitu-

ting the intermediate relays with its corresponding physical elements using the parse

trees.

A context-free grammar is a finite set of variables (also called ‘non-terminals’)

each of which represents a ‘language’. The languages represented by the variables are

described recursively in terms of each other and primitive symbols called ‘terminals’.

The rules relating the variables are called ‘productions’. Given a set of grammar

specifications and a program that follows the grammar specifications, context-free

grammar theory makes it possible to construct a tree model of the program and re-

present it in memory which greatly facilitates both manipulating the program and

adding new language constructs. Once simplified by the substitution of intermediate
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relays, the tree representation of the program is written out in words, by simply repla-

cing the symbols for AND, OR, NOT etc. with the corresponding words, describing

timers as “after x seconds... output”, and counters as “after input has changed x

times, output”. By this removal of intermediate relays the relation of specific physical

inputs to the corresponding outputs becomes evident. This facilitates the debugging

of the program, making it easy to locate cause-effect links. The scope of this thesis

is limited to converting the LL programs to parse trees and removing intermediate

relays in the LL program. Timers and counters are also taken into consideration

while developing the process. The process described above was applied to four case

studies – (i) a conveyor belt system for automatic stamping and removal of the part

(ii) a valve controller for mixing two liquids, both consisting of only logic gates; (iii)

a wood-saw controller program containing timers and (iv) a stack/banding system

containing both timers and counters, used to stack and band sheets of metal. In each

of these cases, the above described methodology was applied. After generating the

parse tree and substituting intermediate relays, the resulting program was written out

in words, as described above. The LL programs thus represented greatly reduced the

effort required in understanding them, and the causal relationships between various

physical elements were easily derived. This made it much easier to glean the design

intent of the LL program from perusal of the code. A comparison of this output with

the methods in [5, 1, 3, 4] is described in the thesis. The advantage of using CFG

to generate a parse tree are that the parser can easily handle changes in the format

of the LL program – the modification is limited to adding a new grammar rule. The

parser does not have to be modified at all. Also, the theory behind CFG ensures that

the implementation of the parser is very efficient, and hence it can handle very large

programs (which are the main target of this work) with ease. The overall methodo-

logy also makes it possible to quickly automate the process for engineers, working on

documentation, diagnosis or modularisation of large PLC programs, to understand

the overall design intent and interaction between the various physical elements.
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Chapter 1

Background and Introduction

1.1 Introduction

A programmable logic controller (PLC) is a digital computer used for sequential

control of electromechanical processes, such as control of machinery on factory as-

sembly lines, amusement rides, or lighting fixtures. Unlike general-purpose compu-

ters, the PLC is designed for extended temperature ranges, immunity to electrical

noise, resistance to vibration and impact, and handling responses and actuating mul-

tiple physical devices. Programs to control machine operation are typically stored

in battery-backed or non-volatile memory. A PLC is an example of a real time sys-

tem since output results must be produced in response to input conditions within a

bounded time, otherwise unintended operation will result.

PLCs are well-adapted to a range of automation tasks. These are typically indus-

trial processes in manufacturing where the cost of developing and maintaining the

automation system is high relative to the total cost of the automation, and where

changes to the system would be expected during its operational life. PLCs contain

input and output devices compatible with industrial pilot devices and controls; little

electrical design is required, and the design problem centres on expressing the desired

sequence of operations in ladder logic (or function chart) notation. PLC applications

are typically highly customised systems so the cost of a packaged PLC is low compa-
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red to the cost of a specific custom-built controller design. On the other hand, in the

case of mass-produced goods, customised control systems are economic due to the

lower cost of the components, which can be optimally chosen instead of a “generic”

solution, and where the non-recurring engineering charges are spread over thousands

or millions of units.

Ladder Logic(LL) is a programming language that represents a program by a

graphical diagram based on the circuit diagrams of relay-based logic hardware. It is

primarily used to develop software for Programmable Logic Controllers (PLCs) used

in industrial control applications, where sequential control of a process or manufac-

turing operation is required. The name is based on the observation that programs

in this language resemble ladders, with two vertical rails and a series of horizontal

rungs between them. Ladder logic is one of the 5 programming languages for PLC,

the others being FBD (Function block diagram), ST (Structured text, similar to the

Pascal programming language), IL (Instruction list, similar to assembly language)

and SFC (Sequential function chart). In USA, LL programs are widely used, while

in Europe, ILs are more popular [1]. Ladder logic is useful for simple but critical

control systems, or for reworking old hardwired relay circuits. As programmable

logic controllers became more sophisticated it has also been used in very complex

automation systems.

Manufacturers of programmable logic controllers generally also provide associated

ladder logic programming systems. Typically, the ladder logic languages from two

manufacturers will not be completely compatible; ladder logic is better thought of

as a set of closely related programming languages rather than one language (the

IEC 61131-3 standard has helped to reduce unnecessary differences, but translating

programs between systems still requires significant work). Even different models of

programmable controller within the same family may have different ladder notation

such that programs cannot be seamlessly interchanged between models.

Ladder Logic can be thought of as a rule-based language, rather than a procedural

3



language. A “rung” in the ladder represents a rule. When implemented with relays

and other electromechanical devices, the various rules “execute” simultaneously and

immediately. When implemented in a programmable logic controller, the rules are

typically executed sequentially by software, in a continuous loop (scan). By executing

the loop fast enough, typically many times per second, the effect of simultaneous and

immediate execution is relatively achieved to within the tolerance of the time required

to execute every rung in the “loop” (the “scan time”).

An example of a LL program that is used to control a drilling machine is given

in Figure 1.1. A rung by rung explanation is given below:

1. When start is ON, and stop is OFF, ICR1 (an internal relay) is activated. Once

this is done, as long as stop is OFF, ICR1 remains activated

2. As long as ICR1 is ON, PL (Pilot light) is activated

3. When ICR1 and LSPP(the part limit switch) is ON, FLAG Dmotor(an internal

coil relay) is activated.

4. When FLAG Dmotor is ON, Dmotor(Drill motor) is activated

5. When ICR1, LSDU(Limit Switch Drill Up), FLAG Dmotor are ON, and LSDD(Limit

Switch Drill Down) is OFF, FLAG Ddown(an internal coil relay) is activated.

Once this happens, FLAG Ddown remains activated irrespective of the state

of LSDU.

6. When FLAG Ddown is ON, Ddown(Drill down) is activated

7. When ICR1, LSDD are ON, and LSDU is OFF, FLAG Dup(an internal coil re-

lay) is activated. Once this happens, FLAG Dup remains activated irrespective

of the state of LSDD.

8. When FLAG Dup is ON, Dup(Drill up) is activated

4



(a) Drilling machine (b) LLD to control the drilling machine

Figure 1.1: Example Ladder Logic program

1.2 Need for reverse engineering

LL programs are used in large, complex systems that control manufacturing and

assembly lines. They eventually get unmanageably large, as the same program is

used for many years, and over the years, different people add bits of code to the

program either for expanding it, or for fixing bugs in the program. Because of the

large and complex nature of the program, the non-linear way in which it is written,

and the fact that the code base is grown by different programmers, it is extremely

difficult for a human being to go through the code and get an overall understanding

of what the program does, and to understand what specific parts of the program

control which specific functions. It is also difficult to debug and modify because its

graphical representation of switching logic obscures the sequential, state-dependent

logic inherent in the program design [6].

Therefore, a system which can make the program easier to understand for a human

being, and correlate between functions and the parts of the program that controls

those functions, would be very advantageous. There are four main reasons why this

would be advantageous:
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� Program debugging: When there is a problem in the program, locating the

source of the problem is essential.

� Program maintenance: Upgrade of the code-base, or optimisation

� Program expansion and reuse: Adding new features, using pre-existing rungs

for consistency.

� Documentation of the program (which is non-existent or insufficient): To help

in understanding the program so that the above would be made easier.

The PLC program would have to be reverse engineered and the design intent ex-

tracted, which will enable a description of the program at a higher level abstraction,

and associate these descriptions with the appropriate parts of the code, so that the

human can get an understanding of the program at various abstraction levels and

also know which parts of the program control specific physical outputs.

Formally, reverse engineering is defined as “the process of analysing a subject

system to identify the system’s components and their interrelationships and to create

representations of the system in another form or at a higher level of abstraction.”

[7]. Reverse engineering generally involves extracting design artifacts and building

or synthesising abstractions that are less implementation-dependent. While reverse

engineering often involves an existing functional system as its subject, this is not

a requirement. Reverse engineering can be performed starting from any level of

abstraction or at any stage of the life cycle.

There are two main sub-areas of reverse engineering [7]:

� Redocumentation: Redocumentation is the creation or revision of a semanti-

cally equivalent representation within the same relative abstraction level. The

resulting forms of representation are usually considered alternate views (for

example, data flow, data structure, and control flow) intended for a human

audience.
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� Design recovery: “Design recovery recreates design abstractions from a com-

bination of code, existing design documentation (if available), personal expe-

rience, and general knowledge about problem and application domains ... De-

sign recovery must reproduce all of the information required for a person to

fully understand what a program does, how it does it, why it does it, and

so forth. Thus, it deals with a far wider range of information than found in

conventional software-engineering representations or code” [8]

Apart from these, two processes exist which use reverse engineering to accomplish

their goals:

� Restructuring: Restructuring is the transformation from one representation

form to another at the same relative abstraction level, while preserving the

subject system’s external behaviour (functionality and semantics).

� Reengineering: Reengineering, also known as both renovation and reclama-

tion, is the examination and alteration of a subject system to reconstitute it in

a new form and the subsequent implementation of the new form.

In this thesis, we are mainly concerned with design recovery. Applying the definition

of design recovery to the example given in Figure 1.1, given the LL program, the

expected output would be somewhere along the lines of “when a part is kept on the

drill table, the part limit switch becomes on, and the drill motor starts. The drill

moves down until it hits the down limit switch. Then it moves up until it hits the

up limit switch.”. Note that the internal coil relays have no part in the description

of the process, and have no physical meaning.

1.3 Objective of this work

The objective of this project is to analyse existing LL programs, and to derive the

direct relationships between the physical outputs and physical inputs. Since the

7



internal coil relays do not relate directly to any physical devices and are used to

accomplish the logic stated in the problem description, they can be substituted by

their physical input equivalents. The substitution of internal coil relays with physical

inputs will relate the outputs directly to the physical inputs. Thus the removal of

the internal coil relays makes it easier for the user or programmer to understand the

the direct dependence of various physical outputs to the specified physical inputs,

without the complexity induced by internal coil relays. Though this work does not

concern itself with the subsequent processing of the program after removal of the

internal relays, it is envisioned that the approach described in this thesis would be

the first step towards achieving complete design recovery from LL programs.

1.4 Thesis organization

This thesis is organized into seven chapters. Chapter 1 (this chapter), gives an

introduction to the problem at hand, need for reverse engineering and objective of

the thesis. Chapter 2 describes the existing literature on this topic, and various

methods that have been proposed so far. It also outlines the problems with these

methods. Chapter 3 introduces context-free grammars - the central concept that is

used to process the LL program and achieve the objective of this work. Chapter 4

describes the application of the proposed method to an LL program and process the

parse tree to generate the LL program with all internal coil relays substituted with

their equivalent physical inputs and outputs. Chapter 5 discusses four case studies,

two with plain logic relays, the third with timers and the fourth with both timers and

counters. Chapter 6 offers a comparison of the the output produced by this method

with other methods described in literature. The thesis ends with conclusions and the

future course of work, also in Chapter 6.
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Chapter 2

Literature Survey

2.1 Background

A sample of the present reverse engineering tools for conventional software programs

is described in Ferenc, Gustafssony et. al, 2002 [9] and Lucca, Fasolino et. al., 2002

[10]. Various aspects of these tools – description in UML class diagrams, specific pat-

tern mining methods, and final representation of the program cannot be directly used

for LL programs because the representation formats of the LL programs is different.

Also UML class diagrams are more useful in describing programming paradigms like

layers of programs or object oriented programs. These paradigms do not apply to

LL programs since it is at a very low level (machine level) and there is no concept of

abstraction – functions, libraries etc. Also, LL programs are closer to event driven

programs – a specific event (input) occurring triggers a specific action (output) to

occur.

But some concepts used in conventional software reverse engineering tools, like

building parse trees to obtain a representation of the program in memory and pattern

mining, can be adapted for use with LL programs

A lot of research has been done in developing systems for the verification of PLC

programs too [5, 3]. Verification of LL programs is a challenge in itself, and given a

set of specifications (written manually), the program is verified against it, to see if it

9



satisfies those specifications. It also helps to filter out any errors that might exist in

the program which for example might violate safety features. This helps to develop

a bug-free program. But the verification process does not give the design intent of

the program. Also in some cases, verification is done slice by slice, which causes a

loss of a overall view of the program.

Some of the literature that has had major influence in understanding the problem

of design recovery in LL programs are described in the subsequent sections. Of these,

one paper describes a method for design recovery itself from LL programs [5], one

describes a method of re-engineering LL programs and converting it to XML [1], and

the remaining describe methods to verify LL programs using automata and Petri nets

[4, 3]. These are presented in the subsequent sections.

2.2 Design Recovery for Relay Ladder Logic [5]

The process used to obtain a Sequential Function Chart (SFC) from a Relay Ladder

Logic (RLL) program is described in this paper.

As it can be seen, various graphs are constructed to represent the PLC program in

this method. A graph to represent which state variables can run concurrently (simul-

taneity graph), which rungs depend on the output of the previous rungs(dependency

graph). Then the simultaneity graph is condensed by grouping nodes in the simulta-

neity graph that are connected in the dependency graph. Then the SFC is developed

from this graph.

The simultaneity graph, which is the first step, has a node for each rung output

and an edge connecting the nodes corresponding to rung outputs that can be true

simultaneously at the completion of one RLL scan. This implies that this graph has

as many nodes as there are rungs in the program, and multiple edges connecting

these in the case of a typical RLL program. This leads to an extremely complex

graph that becomes very hard to manage and process.

The output of this method is a SFC, which gives the control flow of the RLL
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program. Figures 2.1 a, b and c show the physical setup, RLL program input,

and the SFC output respectively. The system considered here is a neutralisation

neutralisation system. The process is used to derive the SFC for the system, shown

in 2.1 c. This SFC gives an good indication of which all outputs in the program are

actuated parallel, and what is the interdependence of the outputs.

The drawback of this method is that the process of converting the LL program to

SFC is complicated, and is difficult to automate. Even for slightly large programs,

the simultaneity graph blows up, as mentioned earlier.

2.3 Visualisation of PLC programs using XML [1]

This paper outlines a re-engineering approach based on the formalisation of PLC

programs. It also transforms the PLC program into a vendor independent format

and helps visualise the structure of PLC programs as intermediate steps. It shows

how XML (eXtensible Markup Language) and corresponding technologies can be

used for the formalisation and visualisation of an existing PLC program.

This paper concerns itself mainly with the Instruction Logic(IL) format of defining

PLC programs, but is interpolatable to other formats also. It uses XSLT (XSL

transformations) to transform a PLC program given in ASCII format and in a tabular

structure with separate columns for addresses, labels, instructions, operands and

descriptions delimited by whitespaces to XML. Then the XML is validated, and then

HTML (Hyper Text Markup Language) is used to visualise the XML output, with

the help of XSL (eXtensible Stylesheet Language).

This method accomplishes only a different format and visual representation of

the PLC IL programs, and the XML is not always human-readable, making it rather

difficult to be used for the purposes of design recovery. Frey and Younis, 2004 [11]

does describe a method to use this XML to construct a finite automata model of

the program, but this model can be used only for the purposes of verification of the

program, and not design intent recovery.
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2.4 Other literature [4, 3]

Zoubek, Rousse et.al., 2003 [4] describe techniques of automatic verification to a

control program written in ladder logic is applied. A model is constructed mechani-

cally from the ladder logic program and subjected to automatic verification against

requirements that include timing. This consists of an exhaustive search of the model

of the program, thus eliminating the drawback of testing. Given a set of specifications

for the program to be tested, this paper describes a method to convert the program

to a timed-automata, and then check it against the specifications. This method is

used purely for verification and testing.

Lee and Lee, 2002 [3] describe a method to convert the LL program into a Petrinet

(PN) by analysing the attributes of the LD program and the characteristics of the

PLC operation. It is mainly developed to equip LL programs with the formal analysis

capability normally available in the Petrinet theory. This paper also mainly concerns

itself with the verification and formal analysis of PLC programs, and not design

recovery.

Even though the concepts in these papers are not directly applied in the method

proposed in this thesis, these papers give indications of the type of inputs and outputs

that would be expected for design recovery, and processes that have already been tried

to achieve the goal. The concept that is actually used in this thesis is mainly from

conventional reverse engineering and design recovery of programs viz. context-free

grammars.
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(a) Physical setup for a neutralization tank (b) LLD program for Neutralization tank

(c) The final SFC output for neutralization tank

Figure 2.1: Neutralisation tank setup
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Chapter 3

Context Free Grammars

As described in Section 2.1 about design recovery and reverse engineering processes

for conventional computer programs, generating the parse tree is usually the first

step, and this parse tree is used for further parsing of the program to recover the

design intent. The parse tree is an abstract representation of the program based

on its syntactic structure. The process of generating a parse tree has a theoretical

basis to it – context-free grammars. This allows the parse trees to be constructed

for arbitrarily large programs very efficiently. This chapter gives the grounding on

the theory of context-free grammars, so that the method of generating parse trees

becomes clearer. It also defines and describes parse trees in detail.

3.1 Introduction to Context-free grammars

Much of the process described in this thesis uses context-free grammar[12] theory

extensively, and hence a brief description of the theoretical background of this for-

mal language is described in this section. It should be noted here that context-free

grammars are used almost exclusively in compilers for general purpose languages like

C/C++, Java etc, and are widely used in computer science in applications ranging

from compilers to calculators, to typesetting (\LATEX)

A context free grammar, G, is a set of rules that describe how to form sentences
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the collection of sentences that can be derived from G is called the language defined

by G and denoted as L(G) is a finite set of variables (also called non-terminals) each

of which represents a language. The language(s) represented by the grammar are

described recursively in terms of each other and primitive symbols called terminals.

The rules relating the variables are called productions.

More formally, a context-free grammar G is a quadruple, (T, NT, S, P), where:

T is the set of terminal symbols, or words, in the language.

NT is the set of non-terminal symbols that appear in the rules of the

grammar

s is a designated member of NT called the goal symbol or start

symbol. The language that G describes, denoted L(G), contains

exactly those sentences that can be derived from s. In other

words, s represents the set of sentences in L(G)

P is the set of productions or rewrite rules. Formally,

P : NT → (T
⋃
NT )∗, or P maps an element of NT into an

element of (T
⋃
NT )∗.

The purpose of context-free grammar here is to represent the program in memory,

so that it can be manipulated further very easily. This manipulation can involve

evaluating the tree, associating actions with each node to enable translation of the

program to a different notation, converting it to machine language code to produce

a binary, discover patterns in the code to aid program understanding etc.

The reason using CFGs in the present scenario proves advantageous is described

below:

� Representation of the program in memory, where any manipulations can be

done.

� A set of productions can define the language – independent of the specific

program, and representation type can be changed whenever needed. Therefore,
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considering new constructs in the language is as simple as adding a grammar

rule for that construct. The main program need not be changed or needs to be

changed minimally.

� Describing the language using a CFG means the parser for that language can

be very efficiently implemented.

� The program can also be evaluated in memory.

Henceforth, ‘grammar’ and ‘context-free grammar’ are used interchangeably for conve-

nience, and should be taken to mean the same thing.

3.2 Defining the grammar

The grammar for each language is written down manually, by inspection of the syntax

and structure of the language that needs to be described. On the development of

a new programming language, this would serve as a formal manner to describe the

language, so that other people can use it, and construct compilers for it.

The original motivation for context-free grammars was the description of natural

languages. We may write rules such as:

<sentence> → <nounphrase><verbphrase>

<nounphrase> → <adjective><nounphrase>

<nounphrase> → <noun>

<noun> → boy
<adjective> → little

Table 3.1: Production rules for natural language

Where the non-terminals are described by the terms in the angular brackets, and

the terminals are the strings.

For a number of reasons, context-free grammars are not an adequate represen-

tation of natural languages like English. For example, if we extend the productions
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given above to encompass all English, we would be able to derive “rock” as a noun

phrase and “runs” as a verb phrase. Thus, “rock runs” would be a sentence, which

does not make sense. But even so, CFGs play a very important part in computer

linguistics.

The use of context-free grammars has greatly simplified the definition of pro-

gramming languages and the construction of compilers because of the natural way in

which they allow these to be described. For example, consider the set of productions:

<expression> → <expression> + <expression>

<expression> → <expression>× <expression>

<expression> → (<expression>)
<expression> → id

Table 3.2: A simple example of production rules

This set of productions defines the arithmetic expressions with operators ‘+’ and

‘*’ and operands represented by the symbol ‘id’. Here, <expression> is the only

variable, and the terminals are ‘+’, ‘*’, ‘(’, ‘)’ and ‘id’. The first two productions say

that an expression can be composed of two expressions connected by an addition or

multiplication sign. The third production says that an expression may be another

expression surrounded by parentheses. The last says a single operand is an expression.

By applying productions repeatedly, we can obtain more complicated expressions.

For example

<expression> => <expression> ∗ <expression>

=> (<expression>) ∗ <expression>

=> (<expression>) ∗ id
=> (<expression> + <expression>) ∗ id
=> (<expression> + id) ∗ id
=> (id + id) ∗ id

Table 3.3: Derivation of sentences in the language described in Table 3.2

The symbol ‘=>’ denotes the act of deriving, that is, replacing a variable by the

right-hand side of a production of that variable. The first line is obtained from the
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second production. The second line is obtained by replacing the first <expression>

in line 1 by the right-hand side of the third production. The remaining lines are the

results of applying productions (4), (1), (4) and (4). The last line, (id + id) ∗ id,

consists solely of terminal symbols and thus is a word in the language of <expression>.

The classic expression grammar, used to evaluate arithmetic operations (+, −,

×, ÷) is given below:

<expression> → <expression> + <expression>

| <expression>− <expression>

| <term>

<term> → <term>× <factor>

| <term>÷ <factor>

| <factor>

<factor> → (<expression>)
| num
| ident

Table 3.4: Classic expression grammar

Here, ‘<expression>’, ‘<term>’ and ‘<factor>’ are the non-terminals, and ‘num’

and ‘ident’ are the terminals. This grammar takes into consideration the appropriate

operator precedence while evaluating an expression. ‘num’ represents all numbers,

and ‘ident’ represents identifiers (like x, y, z etc.)

3.3 Generating the parse tree

The two main steps in deriving the parse tree, scanning and parsing, are described

below:

3.3.1 Scanning

The scanner, or lexical analyser, takes as input a stream of characters and produces

as output a stream of words along with their associated syntactic categories. It

aggregates symbols to form words and applies a set of rules to determine whether
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or not each word is legal in the source language. If the word is valid, the scanner

assigns it a syntactic category, or part of speech.

For example, in the scanner used for the grammar rules described in Table 3.4,

whenever the scanner comes across any number it would assign it the category of

num and whenever it comes across a variable or symbol (like x, y etc.) it would

assign it a category of ident.

In this way, it categorises all the terminals per line of the program or input. The

problem of specifying patters has a natural mathematical formulation, in a nota-

tion called regular expressions. The mathematics leads directly to recognisers, called

finite automata, that scan a stream of symbols to find the specified patterns. Rea-

dily available tools build efficient, customised recognisers from specifications, taking

advantage of the theoretical connections between regular expressions and finite auto-

mata. Hence these tools are directly used, without attempt to write it from scratch.

For example, the pattern for num would be described in regular expressions

as /\d*\.?\d*/ where \d denotes a special character in regular expressions which

stand for a digit and the ‘*’ implies “occurring consecutively any number of times”.

The \. denotes a decimal point and the ‘?’ denotes that the decimal point may or

may not occur. This formulation of regular expression can describe all real numbers,

and once this is associated with num all numbers will be categorised as num. Si-

milarly /[a-zA-Z]+/ would denote all variable names with one or more characters

that are either between lowercase or uppercase a-z. A full explanation of regular

expressions and the implementation of a finite automata to detect the patterns is

beyond the scope of this thesis, and is described well in Ullman and Hopcroft, 1979

[12]

3.3.2 Parsing

The parser has the primary responsibility for recognising syntax - that is, for deter-

mining whether the program being input is a valid program according to the given
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context-free grammar model. The parser works with an abstracted version of the

program, a stream of words and parts of speech produced by the scanner. If this

stream of words and parts of speech form a valid program, then the parser builds

a concrete model of the program for use by the later phases of the parser. Those

later phases analyse this concrete model, in semantic elaboration and translation.

The results of that analysis are recorded as part of the parser’s internal model of the

program. If the input does not form a valid program, the parser should report the

problems back to the user, along with the useful diagnostic information.

A useful representation of the program in abstract form is called a parse tree

or derivation tree. These parse trees superimpose a structure on the words of a

language. The vertices of a parse tree are labelled with terminal or variable symbols

of the grammar or possibly with ε. If an interior vertex n is labelled A, and the

sons of n are labelled X1, X2, ..., Xk from the left then A → X1X2...Xk must be a

production.

More formally, let G = (T, NT, s, P) be a CFG. A tree is a parse (or derivation)

tree if:

1. Every vertex has a label, which is a symbol of T
⋃
NT

⋃{ε}
2. The label of the root is s

3. If a vertex is interior and has label A, then A must be in NT

4. If n has label A and vertices n1, n2, ..., nk are the sons of the vertex n, in order

from the left, with labels X1, X2, ..., Xk respectively, then

A→ X1X2...Xn

must be a production in P

5. If vertex n has label ε, then n is a leaf and is the only son of its father.

As an example, the parse tree for the derivation described in Table 3.2 is shown in

Figure 3.1.
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Figure 3.1: Parse tree example

Building the parse tree is completely automated. Each term in the statement of

the program that is being parsed is read one by one into a stack. Whenever the top

of the stack matches a RHS of a production rule (grammar rule), it is replaced by

the LHS of the production rule. Each potential match is represented by a ‘handle’.

A handle is represented as: <A�b,k>; where: A� b is the production in G and k is

the position on the tree’s current frontier of the right end of b. The algorithm for

parsing a program statement to produce is given in Algorithm 3.1

Algorithm 3.1 Algorithm for generating a parse tree

push i n v a l i d ;
word<−NextWord ( ) ;
r epeat u n t i l ( word eo f & the stack conta in s exac t l y

Goal on top o f i n v a l i d )
i f a handle f o r A−>ß i s on top o f the s tack then
pop | ß | symbols o f f the s tack ;
push A onto the s tack ;
connect A and the | ß | symbols

e l s e i f ( word!= eo f ) then
push word ;
word<−NextWord ( ) ;

e l s e
r epo r t syntax e r r o r & ha l t ;

An example of the development of the parse tree for the expression x − 2 × y
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according to the grammar given in Table 3.4 is given in Figure 3.2.

22



Figure 3.2: Development of parse tree for expression x− 2× y
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Chapter 4

Proposed approach for recovering

design intent from LL programs

In this chapter, the specific steps that are unique as applied to LL programs are

described

4.1 Outline of proposed method for recovering de-

sign intent from LL programs

The process proposed is shown in Figure 4.1. Each of these steps are explained in

the subsequent sections. In brief, a context-free grammar is defined for LL programs

by inspection (applicable to all LL programs). Then the LL program is converted

from the L5K format to a parsable format defined in Section 4.2. Using the grammar

defined earlier, the LL program is converted to a parse tree. On this parse tree, the

heuristic algorithm defined in Section 4.5 is applied to substitute the internal coil

relays with the corresponding physical inputs. Then the leaves of the parse tree are

output from left to right to lead to the final output.
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Figure 4.1: Outline of proposed method

4.2 Convert LL program to a parsable(text) for-

mat

As described earlier, the LL program is usually in propriety formats, depending on

the software used. In this case, RS LOGIX 5000 is used. RS LOGIX is able to save

the LL program to a text-based format, called L5K format. This format, though, is

not convenient for processing by the parser, for two reasons:

1. A lot of information in the L5K file is irrelevant to the present process. This

information is mainly concerning the details of execution of the program like

memory addresses where variables are stored, system variables, and other de-

tails.

2. The main description of the program itself is very verbose, and would entail a
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more complex grammar to describe it. The format described here is easier to

work with.

The program has five main elements that need to be represented. The symbol/format

used to represent each is also given in single quotes:

1. AND - ‘.’

2. OR - ‘+’

3. NOT - ‘˜’

4. TIMERS - ‘{set, reset, timer time, timer increment, output}’

5. COUNTERS - ‘(set, reset, count, output)’

For example, a rung like the on given in 4.2 would be represented in the L5K file as

shown below

XIO(stop)[XIC(start), XIC(CR)]OTE(CR);

This would be represented in the parsable format as follows:

[∼ stop].[start+ CR] = CR;

Once this is done, the parse tree for the program can be generated.

Figure 4.2: Example LL program rung
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4.3 Defining the grammar for LL programs

A grammar has to be defined for the LL programs. The grammar is defined based

on inspection of LL programs. This grammar is applicable to all LL programs in the

given parsable format, and is not limited to a single program. Also, if a new element

needs to be added to the definition of LL programs (like, say, a safety override),

all that would be required to take that into consideration would be to add a new

grammar rule for that specific element. Given the parsable format defined in section

4.2, the grammar is defined in Table 4.1

Grammar Rules
1 S → B
2 B → B;B
3 B → E = V
4 B → B;
5 E → E + E
6 E → E.E
7 E → ∼ E
8 E → V
9 E → [E]
10 V → a|b|c|d|e|f |...|z
11 C → (E,E, I, J, E)
12 T → {E,E, I, J, E}
13 I, J → 0|1|2|...|9
(a) The grammar for LL programs

Description of symbols
B : Block
E : Expression
V : Variable
C : Counter
T : Timer
I, J : Numbers

B,E, V, C, T, I, J : Non-terminals
a, b, ..., z; 0, 1, ..., 9 : Terminals

(b) Explanation of symbols used in the grammar

Table 4.1: The Grammar defined for LL programs

The symbols are explained in Table 4.1b. A ‘Block’ can be considered as some

equivalent of a line of program, an ‘Expression’ is a combination of ‘Variables’ with

the appropriate operators in between. The ‘Variables’ are the inputs, outputs and

internal relays in the program. Rule 1 defines the start symbol S for the context-free

grammar(CFG). Rules 2 and 4 defines the syntax of how a block should end. Rule

3 shows how a block is defined in terms of expressions and variables.Rules 5,6 and

7 respectively define the operations of OR, AND and NOT. Rule 8 states that an

expression can also be a variable (trivial case). Rule 9 states that and expression

27



in braces is also an expression. Rule 10 gives the set of variables allowed. Rule 11

defines the format to represent a counter. Rule 12 represents the format to represent

a timer. Rule 13 defines the numbers that are allowed for the arguments in timers

and counters.

4.4 Generate a parse tree from the program

The parse tree for the program is generated as described in Section 3.3. It is this

parse tree that is manipulated as given in the next section, to obtain the simplified

parse tree.

Take the example given in Figure 4.2. The parsable format is given would be as

given:

[∼ stop].[start+ CR] = CR;

Now, each character is read in one by one. The steps that would occur on appli-

cation of the algorithm are given below:

28



Action Rules applied

stop => V => E 10,8

E => E 7

[E] => E 9

start => V => E 10,8

CR => V => E 10,8

E + E => E 5

[E] => E 9

E.E => E 6

CR => V 10

E = V => B 3

B; => B 4

B => S. 1

Here the parser stops, since the goal symbol (S) has been reached, and accepts

the input.

The resulting tree generated would be as shown in Figure

Figure 4.3: Parse tree for LL program in Figure 4.2
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4.5 Post-processing of parse tree

The post processing of the parse tree is where the program is simplified by substitu-

ting internal relays with its equivalent physical input and output relays.

In the post-processing of the parse tree, the heuristic algorithm followed is as

given in Algorithm 4.1. Basically, each set of inputs that corresponds to an output

is obtained from the parse tree, and wherever an output occurs, it is replaced by this

set of inputs. This is done in multiple passes, until there are no outputs that can be

replaced.

Algorithm 4.1 Heuristic algorithm for post-processing the parse tree

do a DFS( Depth F i r s t Search ) o f the parse t r e e ;
i f node i s ‘= ’
s t o r e the l e f t subt ree in a s s o c i a t i o n with r i g h t

v a r i a b l e as key in mapping
end i f
do a DFS o f the parse t r e e

i f node matches key in mapping
i f node ( not on the r i g h t o f ‘= ’ OR

node v a r i a b l e not the same as rhs v a r i a b l e OR
subtree does not conta in node v a r i a b l e )

r e p l a c e node with a s s o c i a t e d subt ree from mapping
end i f

end i f
c l a s s i f y the v a r i a b l e s depending on the p o s i t i o n

in parse t r e e as pureInputs , pureOutputs , i n t e rmed ia t e
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Chapter 5

Case Studies

Four case studies are chosen for demonstrating the proposed method - (i) a conveyor

belt system for automatic stamping and removal of the part, (ii) valve controller for

mixing two liquids, (iii) wood-saw controller, and (iv) a stack/banding system. The

first two consist purely of logical relays (no counters or timers). They are chosen to

illustrate more easily the application of the process. The third case study includes

timers, which makes it slightly more complex. The fourth case study includes both

timers and counters, and is the most complex of the four.

5.1 Case study one - conveyor belt system for au-

tomatic stamping and removal of the part

5.1.1 Problem description

When a part is placed on the conveyor at position 1, and when a start button is

pressed it moves to position 2. Upon reaching position 2, it stops for the stamping

operation to take place. After stamping it automatically moves to position 3. It stops

at position 3, where the part is removed manually from the conveyor. Assume only

one part is on the conveyor at a time. Add limit switches, interlocks, push buttons,

etc as required. If you become stuck at the middle station, you may add a manual
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restart switch for this point on the conveyor.

5.1.2 Physical setup

The physical setup for the conveyor belt system for automatic stamping and removal

of the part is shown in Figure 5.1

Figure 5.1: Conveyor Physical Setup

5.1.3 LL program

The LL Program for the conveyor belt system is shown in Figure 5.2

5.1.4 Parsable format

Conversion of the L5K file to a parsable format is shown below. All rungs are written

in terms of the grammar defined in Section 4.3, with ‘+’ standing for OR, ‘.’ for AND

and ‘˜’ for NOT.

[CR] = [ [stop]].[[start].[LS1] + [CR]]

[CR1] = [CR].[∼ [LS2]].[∼ [LS3]]

[CR2] = [∼ [LS1]].[[MRestart] + [CR2]].[∼ [LS3]]

[CR4] = [[LS1] + [CR2] + [CR3] + [CR4]].[∼ [LSUP ]]

[CR3] = [[CR].[LSDN ] + [CR3]].[∼ [LS3]]
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Figure 5.2: LL program for conveyor

[UPMOTOR] = [CR4]

[DNMOTOR] = [LS2].[ [CR3]].[∼ [CR2]]

[MOTOR] = [[CR1] + [CR3] + [CR2]]

5.1.5 Final result showing outputs in terms of physical in-

puts

The following shows the output of the whole process – after creating the parse tree

and substituting the internal coil relays with their corresponding physical outputs,

and then writing the parse tree back in string form (write the leaves of the parse tree

in order from left to right).

MOTOR = [[∼ stop.start.LS1. ∼ LS2. ∼ LS3] + [[∼ stop.start.LS1
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.LSDN. ∼ LS3] + [∼ LS1.MRestart. ∼ LS3]]

UPMOTOR = [[LS1 + [∼ LS1.MRestart. ∼ LS3] + [∼ stop.start.LS1

.LSDN. ∼ LS3]]. ∼ LSUP ]

CR4 = [[LS1 + [∼ LS1.MRestart. ∼ LS3] + [∼ stop.start.LS1

.LSDN. ∼ LS3]]. ∼ LSUP ]

DNMOTOR = [[LS2].[∼ [[[[∼ stop].[[start].[LS1]]].[LSDN ]].[LS3]]].[[[∼ LS1]

.[MRestart].[∼ LS3]]]]

CR = [[∼ stop].[[start].[LS1]]]

CR2 = [[∼ LS1].[MRestart].[∼ LS3]]

CR1 = [[[∼ stop].[[start].[LS1]]].[∼ LS2].[∼ LS3]]

CR3 = [[[[∼ stop].[[start].[LS1]]].[LSDN ]].[∼ LS3]]
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5.1.6 Comparison - before and after substitution

Output Original expression Processed expression

MOTOR [[CR1] + [CR3] + [CR2]]

[[[[[ stop].[[start].[LS1]]].[∼ LS2].

[∼ LS3]]+[[[[ stop].[[start].[LS1]]]

.[LSDN ]].[∼ LS3]] + [[∼

LS1].[MRestart]

.[∼ LS3]]]]

UPMOTOR [CR4]

[[[[LS1] + [[∼

LS1].[[MRestart]].[∼ LS3]]

+[[[[∼ stop].[[start].[LS1]]].

[LSDN ]].[∼ LS3]]].[∼ LSUP ]]]

DNMOTOR [LS2].[∼ [CR3]].[∼ [CR2]]

[[LS2].[∼ [[[[∼

stop].[[start].[LS1]]]

.[LSDN ]].[∼ LS3]]].[∼ [[∼ LS1]

.[MRestart].[∼ LS3]]]]

CR [∼ [stop]].[[start].[LS1] + [CR]] [[∼ stop].[[start].[LS1]]]

CR2
[ [LS1]].[[MRestart] + [CR2]].[∼

[LS3]]
[[∼ LS1].[MRestart].[∼ LS3]]

CR1 [CR].[ [LS2]].[∼ [LS3]]
[[[∼ stop].[[start].[LS1]]]

.[∼ LS2].[∼ LS3]]

CR4
[[LS1] + [CR2] + [CR3] + [CR4]]

.[∼ [LSUP ]]

[[[LS1] + [[∼

LS1].[MRestart].[∼ LS3]]

+[[[[∼ stop].[[start].[LS1]]].

[LSDN ]].[∼ LS3]]].[∼ LSUP ]]

CR3 [[CR].[LSDN ]+[CR3]].[∼ [LS3]]

[[[[∼

stop].[[start].[LS1]]].[LSDN ]]

.[∼ LS3]]

It can be seen here that the processed expression makes it easier to understand
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the physical inputs that control each output relay. For example, consider the case

of DNMOTOR which is the down motor used to control the stamper. From the

original expression, it is quite difficult to know what physical inputs actually control

this down motor. But from the processed expression, it becomes obvious that the

limit switches 1,2 and 3, (LS1, LS2, LS3); the down sensing limit(LSDN) switch for

the stamper, and the start and stop buttons (start, stop) control this down motor.

And all of them are direct physical inputs. So it is easy to understand the cause-effect

link between the various components of the machine.

5.2 Case study two – valve controller for mixing

two liquids

5.2.1 Problem description

If start button is pressed LED Y0 glows and feed valves Y1 and Y2 of vessels V1

and V2 opens and they close after the level reaches to X1 and X3. Then the outlet

valves Y3 and Y4 opens until the liquid level reaches to X2 and X4. The stirrer Y5

starts ass soon as the liquid level reaches to X5 and stops when liquid level falls to

X6. The valve Y6 opens when the liquid levels in V1 and V2 are at X2 and X4 and

closes when the liquid level in V3 drops to X6.

5.2.2 Physical setup

The physical setup for the valve control system for automatic stamping and removal

of the part is shown in Figure 5.3

5.2.3 LL program

The LL Program for the valve control system is shown in Figure 5.4
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Figure 5.3: Valve control Physical Setup

5.2.4 Parsable format

Conversion of the L5K file to a parsable format is shown below. All rungs are written

in terms of the grammar defined in Section 4.3, with ‘+’ standing for OR, ‘.’ for AND

and ‘˜’ for NOT.

[CR] = [ [stop]].[[start] + [CR]].[∼ [X1]].[∼ [X3]]

[Y 0] = [[CR] + [Y 0]]

[Y 1] = [CR].[∼ [X1]]

[Y 2] = [CR].[∼ [X3]]

[Y 3] = [[X1] + [Y 3]].[X2]

[Y 4] = [[X3] + [Y 4]].[X4]

[Y 5] = [[X5] + [Y 5]].[X6]

[Y 6] = [∼ [X2]].[∼ [X4]].[X6]

5.2.5 Final result showing outputs in terms of physical in-

puts

The following shows the output of the whole process – after creating the parse tree

and substituting the internal coil relays with their corresponding physical outputs,

and then writing the parse tree back in string form (write the leaves of the parse tree
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Figure 5.4: LL program for Valve control

in order from left to right).

Y 3 = [[X1].[X2]]

Y 2 = [[[∼ stop].[start].[∼ X1].[∼ X3]].[∼ X3]]

Y 5 = [[X5].[X6]]

Y 4 = [[X3].[X4]]

Y 6 = [[∼ X2].[∼ X4].[X6]]

CR = [[∼ stop].[start].[∼ X1]. ∼ X3]]

Y 1 = [[[∼ stop].[start].[∼ X1].[∼ X3]].[∼ X1]]

Y 0 = [[[[∼ stop].[start].[∼ X1].[∼ X3]]]]
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5.2.6 Comparison - before and after substitution

Output Original expression Processed expression

Y 3 [[X1] + [Y 3]].[X2] [[[X1]].[X2]]

Y 2 [CR].[∼ [X3]]
[[[ stop].[[start]].[∼ X1]

.[∼ X3]].[∼ X3]]

Y 5 [[X5] + [Y 5]].[X6] [[[X5]].[X6]]

Y 4 [[X3] + [Y 4]].[X4] [[[X3]].[X4]]

Y 6 [∼ [X2]].[∼ [X4]].[X6] [[∼ X2].[∼ X4].[X6]]

CR
[∼ [stop]].[[start] + [CR]]

.[∼ [X1]].[∼ [X3]]
[[∼ stop].[[start]].[∼ X1].[∼ X3]]

Y 1 [CR].[∼ [X1]]
[[[∼ stop].[[start]].[∼ X1]

.[∼ X3]].[∼ X1]]

Y 0 [[CR] + [Y 0]]
[[[[∼ stop].[[start]].[∼ X1].[∼

X3]]]]

It can be seen here that the simplified expression makes it easier to understand

the physical inputs that control each output relay. For example, consider the case

of Y 1 which is the the valve flow control valve for the first tank. From the original

expression, it is quite difficult to know what physical inputs actually control this

down motor. But from the simplified expression, it becomes obvious that the stop

and start buttons, and X1 and X3 (the upper level indication in the two tanks)

control Y 1. And all of these are direct physical inputs. So it is easy to understand

the cause-effect link between the various components of the machine.
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5.3 Case study three - wood-saw controller

5.3.1 Problem description

A wood saw, W, a fan F and a lubrication pump, P all go on when a start button is

pushed. A stop button stops the saw only. The fan is to run an additional 5 seconds

to blow the chips away. The lube pump is to run for 8 seconds after shut down of

W. Additionally, if the saw has run more than one minute the fan should stay on

indefinitely. The fan may then be turned off by pushing a separate fan reset button.

If the saw has run less than one minute, the pump should go off immediately when

the pump is turned off. The 8 seconds time delay off does not take place for a running

time of less than one minute.

5.3.2 LL program

The LL Program for the wood saw controller system is shown in Figure 5.5

Figure 5.5: LL program for Wood saw
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5.3.3 Parsable format

Conversion of the L5K file to a parsable format is shown below. All rungs are written

in terms of the grammar defined in Section 4.3, with ‘+’ standing for OR, ‘.’ for AND

and ‘˜’ for NOT.

[CR] = [∼ [Stop]].[[Start] + [CR]]

[CR1] = [[Stop] + [CR1]].[fantimer].pumptimer]

{CR, 60, 1, sawtimer}

[saw] = [CR]

[CR2] = [[sawtimer] + [CR2]]

{[CR1. ∼ CR2], 5, 1, fantimer}

{[ CR.CR2], 8, 1, pumptimer}

[fan] = [[CR] + [[CR2].[∼ resetB] + [CR1]]]

[pump] = [[CR] + [CR1]]

5.3.4 Final result showing outputs in terms of physical in-

puts

The following shows the output of the whole process – after creating the parse tree

and substituting the internal coil relays with their corresponding physical outputs,

and then writing the parse tree back in string form (write the leaves of the parse tree

in order from left to right).

fan = [[∼ stop.start+ [sawtimer. ∼ resetB] + [stop.fantimer.pumptimer]]]

{∼ Stop.Start, 60, 1, sawtimer}

pump = [[∼ stop.start+ Stop.fantimer.pumptimer]]

saw = [∼ stop.start]

CR = [[∼ Stop.Start]]

{[Stop.fantimer.pumptimer. ∼ sawtimer], 5, 1, fantimer}

{[∼ [∼ Stop.Start].sawtimer], 8, 1, pumptimer}
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CR2 = [sawtimer]

CR1 = [Stop.fantimer.pumptimer]

5.3.5 Comparison – before and after substitution

Output Original expression Processed expression

fan
[[CR] + [[CR2].[∼

resetB] + [CR1]]]

[[∼ stop.start+ [sawtimer. ∼

resetB]

+[stop.fantimer.pumptimer]]

sawtimer {CR, 60, 1, sawtimer} { Stop.Start, 60, 1, sawtimer}

pump [[CR] + [CR1]]
[[∼ stop.start

+stop.fantimer.pumptimer]]

saw [CR] [∼ stop.start]

CR [∼ [Stop]].[[Start] + [CR]] [∼ Stop.Start]

fantimer {[CR1. ∼ CR2], 5, 1, fantimer}
{[Stop.fantimer.pumptimer

. ∼ sawtimer], 5, 1, fantimer}

pumptimer {[∼ CR.CR2], 8, 1, pumptimer}

{[∼ [∼

Stop.Start].sawtimer], 8, 1,

pumptimer}

CR2 [[sawtimer] + [CR2]] [sawtimer]

CR1
[[Stop] + [CR1]].[fantimer]

.pumptimer]

[Stop.fantimer

.pumptimer]

Here it can be seen that for the timer fantimer, the original expression does not

correlate it with any physical inputs. The processed expression shows clearly that it

depends on the stop and start buttons and the output of the sawtimer. Similarly, for

the pumptimer, it can be seen from the processed expression that it is activated by

the start or stop buttons, or the sawtimer’s output. The internal relays CR, CR1,

and CR2 are removed from the expressions on the processed outputs completely.
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5.4 Case study four - stack/banding system

5.4.1 Problem description

A stacking/banding system (s) requires a spacer to be inserted (I) in a stack of panels

after 14 sheets are stacked. After 14 more (28 total), the stack is to be banded (B).

Add sensors and assume output devices as required. After banding is completed

there is a two second delay for the bander to pull back. Then, an identification spray

colour dot (P) is to be applied to the stack. Spray time is 4 seconds.

5.4.2 LL program

The LL Program for the the stack/bander system is shown in Figure 5.6

Figure 5.6: LL program for Stack

5.4.3 Parsable format

Conversion of the L5K file to a parsable format is shown below. All rungs are written

in terms of the grammar defined in Section 4.3, with ‘+’ standing for OR, ‘.’ for AND

and ‘˜’ for NOT.

[CR] = [∼ [stop]].[[start] + [CR]]
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(LS1, reset, 10, 1, stackcount)

(LS1, reset, 28, 1,morestack)

[spacer] = [CR].[stackcount.DN ].[∼ [spacercomplete]]

[binder] = [CR].[morestack.DN ].[∼ [bandingcomplete]]

{bandingcomplete, reset, 2, 1, delaytime}

[motor] = [delaytime.DN ].[∼ [LS2]].[CR]

5.4.4 Final result showing outputs in terms of physical in-

puts

The following shows the output of the whole process – after creating the parse tree

and substituting the internal coil relays with their corresponding physical outputs,

and then writing the parse tree back in string form (write the leaves of the parse tree

in order from left to right).

binder => [[[∼ stop].[[start]]].[morestack].[∼ bandingcomplete]]

(LS1, reset, 10, 1, stackcount)

(LS1, reset, 28, 1,morestack)

spacer => [[[∼ stop].[[start]]].[stackcount].[∼ spacercomplete]]

motor => [[delaytime].[∼ LS2].[[∼ stop].[[start]]]]

{bandingcomplete, reset, 2, 1, delaytime}

CR => [[∼ stop].[[start]]]
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5.4.5 Comparison - before and after substitution

Output Original expression Processed expression

binder
[CR].[morestack.DN ].

[∼ [bandingcomplete]]

[[[∼ stop].[[start]]].[morestack].

[∼ bandingcomplete]]

stackcount (LS1, reset, 10, 1, stackcount) (LS1, reset, 10, 1, stackcount)

morestack (LS1, reset, 28, 1,morestack) (LS1, reset, 28, 1,morestack)

spacer
[CR].[stackcount.DN ].

[∼ [spacercomplete]]

[[[∼ stop].[[start]]].[stackcount].

[∼ spacercomplete]]

motor [delaytime.DN ].[∼ [LS2]].[CR]
[[delaytime].[∼ LS2].[[∼

stop].[[start]]]]

delaytime
{bandingcomplete, reset, 2

, 1, delaytime}

{bandingcomplete, reset, 2

, 1, delaytime}

CR [∼ [stop]].[[start] + [CR]] [[∼ stop].[[start]]]

Here it can be seen that the internal relay CR has been removed from the expres-

sions on the processed output, and everything is expressed in terms on pure physical

inputs and outputs.
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Chapter 6

Conclusions

6.1 Comparison with other methods

The results obtained with the proposed method can be compared with the results

obtained from other methods using three different parameters:

1. Utility of the output – how useful the final result given by the method is in

helping the user understand the program.

2. Complexity in construct – how complex the algorithm is to understand and

implement.

3. Degree of automation – how many steps in the algorithm can be automated by

a program.

A qualitative comparison table is shown for each of the methods
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Paper in question

Utility Complexity Degree of automation

Method proposed in this work

high medium high

Falcione and Krogh, 1992

“Design Recovery for Relay Ladder

Logic”[5]

high high medium

. Younis and Frey, 2004

“Visualization of PLC Programs using

XML”[1]

low medium high

Lee and Lee, 2002

Conversion of LD program into

augmented PN graph[3]

very low high medium

Zoubek, Roussel, et.al.,2003 “Towards

automatic verification of ladder logic

programs”[4]

very low medium high

It should be noted here that utility is evaluated only with respect to design

recovery. The method might be very useful for some other purpose, but here we are

concerned only with design recovery.

The reasons for these parameters is explained in the following sections.

6.1.1 Design Recovery for Relay Ladder Logic [5]

As mentioned in Section 2.2, this method produces a Sequential Function Chart

(SFC) as its output. SFC represents the temporal sequence of the program, and

is able to describe parallel operations particularly well. But the methodology for
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conversion from a LL program to SFC is not straightforward, and moreover, cannot

be automated. The output format is not user-friendly, though the content of the

SFC does give a lot of information.

6.1.2 Visualisation of PLC programs using XML [1, 2]

This method, described in Section 2.3, takes a Instruction List (IL) as the input, and

converts it to a vendor independent XML format.

This XML file is then used to build an automata model for analysis, simulation,

formal verification, and validation. The XML model is very useful for visualising the

hierarchy of the program. But it does not help in understanding the design intent of

the program at all.

UML class diagrams, described in Younis and Frey, 2006 [2] are also insufficient

to represent the program. UML is mainly used to describe Object Oriented programs

in languages such as C++, Java; and are completely unsuited for describing a PLC

LL program, due to its low level of abstraction and complete absence of objects.

So on the whole, converting a PLC LL program to XML or UML only yields the

program in a different format (like L5K), and does little to facilitate design recovery.

Also, the method described in this specific paper is applicable only to IL and not LL.

6.1.3 Conversion of a LD program into an augmented PN

graph [3]

This method, described in Section 2.4, gives an augmented petrinet as the final output

of the process.

The general problem with petrinets is that only the local state is shown at a time,

and the global state is not immediately obvious. Also the specific method described

in this paper is quite complex, and the translation to petrinets is done rung by rung.

This leads to the number of nodes and links in the petrinets being very large. Because

of this, the program is sliced into smaller parts, and then the translation is done. This
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leads to the model losing its ability to describe the program as a whole.

Another important aspect is that the petrinet generated is only used to verify

the program against a given set of specifications. In no way is it attempted to give

the design intent of the program, though the petrinet does convey some level of the

control flow of the part of the program for which it is constructed.

6.1.4 Towards automatic verification of ladder logic programs

[4]

This method, described in Section 2.4 produces a timed automata as its output. This

model does only verification of the program against a set of specifications. Also, the

size of the automata created tends to become very large, and hence, slices of the

program are converted to automata, and checked with given conditions, not the

entire program. This causes it to lose an overall perspective of the program.

6.2 Conclusion

This thesis outlines a new method for making it easier to retrieve design intent by

substituting intermediate relays in PLC LL programs that is completely automated,

very flexible and easily extensible . This process would be a step which makes it easier

for human beings to understand the program by analysis and use of their experience.

This method deals solely with the program, and uses its syntactic structure to process

it and represent it in an easier to understand format. It does not use any sort

of system and external knowledge, and hence is limited by that fact in providing

complete design recovery. It uses a formal method known as context-free grammar,

which is widely used in the field of computer science to develop compilers, interpreters

etc. It applies this to PLC LL programs to derive the required output. The most

important advantage of using context-free grammar would be that any changes to

the format of the program can be very easily accommodated, and presumably, this
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method can be adapted for the other formats of PLC programs too.

The next logical step would be applying pattern mining algorithms to the output

of this process to extract similar chunks of code. It will be able to abstract out

the detailed workings of the program, and provide chunks of the program that do

similar jobs, making it even more easy for a human being not only to understand the

program, but also to find out which parts of the program controls which part of the

physical machine. By a further application of external and system knowledge, and

learning systems, it might be possible to get a human understandable description of

the program without any human intervention at all.
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